Bioprocessing of renewable resources to commodity bioproducts (Hoboken, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBioprocessing of renewable resources to commodity bioproducts / ed. by V.S.Bisaria, A.Kondo. - Hoboken: Wiley, 2014. - xxii, 555 p., [3] l. ill.: ill., tab. - Bibliogr. at the end of the chapters. - Ind.: p.541-555. - ISBN 978-1-118-17583-5
Шифр: (И/Л8-B60) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
PREFACE ........................................................ xv
CONTRIBUTORS .................................................. xix

PART I. ENABLING PROCESSING TECHNOLOGIES

1  Biorefineries - Concepts for Sustainability .................. 3
   Michael Sauer, Matthias Steiger, Diethard Mattanovich, and
   Hans Marx
   1.1  Introduction ............................................ 4
   1.2  Three Levels for Biomass Use ............................ 5
   1.3  The Sustainable Removal of Biomass from the Field is
        Crucial for a Successful Biorefinery .................... 7
   1.4  Making Order: Classification of Biorefineries ........... 8
   1.5  Quantities of Sustainably Available Biomass ............ 10
   1.6  Quantification of Sustainability ....................... 11
   1.7  Starch-and Sugar-Based Biorefinery ..................... 12
        1.7.1  Sugar Crop Raffination .......................... 14
        1.7.2  Starch Crop Raffination ......................... 14
   1.8  Oilseed Crops .......................................... 14
   1.9  Lignocellulosic Feedstock .............................. 16
        1.9.1  Biochemical Biorefinery (Fractionation
               Biorefinery) .................................... 16
        1.9.2  Syngas Biorefinery (Gasification Biorefinery) ... 18
   1.10 Green Biorefinery ...................................... 19
   1.11 Microalgae ............................................. 20
   1.12 Future Prospects—Aiming for Higher Value from Biomass .. 21
   References .................................................. 24
2  Biomass Logistics ........................................... 29
   Kevin L. Kenney, J. Richard Hess, Nathan A. Stevens,
   William A. Smith, Ian J. Bonner, and David J. Muth
   2.1  Introduction ........................................... 30
   2.2  Method of Assessing Uncertainty, Sensitivity, and
        Influence of Feedstock Logistic System Parameters ...... 31
   2.1  Analysis Step 1—Defining the Model System .............. 31
        2.2.2  Analysis Step 2—Defining Input Parameter
               Probability Distributions ....................... 31
        2.2.3  Analysis Step 3—Perform Deterministic
               Computations .................................... 32
        2.2.4  Analysis Step 4—Deciphering the Results ......... 34
   2.3  Understanding Uncertainty in the Context of Feedstock
        Logistics .............................................. 36
        2.3.1  Increasing Biomass Collection Efficiency by
               Responding to In-Field Variability .............. 36
        2.3.2  Minimizing Storage Losses by Addressing
               Moisture Variability ............................ 38
   2.4  Future Prospects ....................................... 40
   2.5  Financial Disclosure/Acknowledgments ................... 40
   References .................................................. 41
3  Pretreatment of Lignocellulosic Materials ................... 43
   Karthik Rajendran and Mohammad J. Taherzadeh
   3.1  Introduction ........................................... 44
   3.2  Complexity of Lignocelluloses .......................... 45
        3.2.1  Anatomy of Lignocellulosic Biomass .............. 45
        3.2.2  Proteins Present in the Plant Cell Wall ......... 46
        3.2.3  Presence of Lignin in the Cell Wall of Plants ... 47
        3.2.4  Polymeric Interaction in the Plant Cell Wall .... 48
        3.2.5  Lignocellulosic Biomass Recalcitrance ........... 49
   3.3  Challenges in Pretreatment of Lignocelluloses .......... 52
   3.4  Pretreatment Methods and Mechanisms .................... 53
        3.4.1  Physical Pretreatment Methods ................... 53
        3.4.2  Chemical and Physicochemical Methods ............ 56
        3.4.3  Biological Methods .............................. 61
   3.5  Economic Outlook ....................................... 64
   3.6  Future Prospects ....................................... 67
   References .................................................. 68
4  Enzymatic Hydrolysis of Lignocellulosic Biomass ............. 77
   Jonathan J. Stickel, Roman Brunecky, Richard T. Elander,
   and James D. McMillan
   4.1  Introduction ........................................... 78
   4.2  Cellulase, Hemicellulase, and Accessory Enzyme
        Systems and Their Synergistic Action on
        Lignocellulosic Biomass ................................ 79
        4.2.1  Biomass Recalcitrance ........................... 79
        4.2.2  Cellulases ...................................... 80
        4.2.3  Hemicellulases .................................. 81
        4.2.4  Accessory Enzymes ............................... 81
        4.2.5  Synergy with Xylan Removal and Cellulases ....... 82
   4.3  Enzymatic Hydrolysis at High Concentrations of
        Biomass Solids ......................................... 83
        4.3.1  Conversion Yield Calculations ................... 84
        4.3.2  Product Inhibition of Enzymes ................... 85
        4.3.3  Slurry Transport and Mixing ..................... 86
        4.3.4  Heat and Mass Transport ......................... 87
   4.4  Mechanistic Process Modeling and Simulation ............ 88
   4.5  Considerations for Process Integration and Economic
        Viability .............................................. 91
        4.5.1  Feedstock ....................................... 91
        4.5.2  Pretreatment .................................... 92
        4.5.3  Downstream Conversion ........................... 94
   4.6  Economic Outlook ....................................... 95
   4.7  Future Prospects ....................................... 96
   Acknowledgments ............................................. 97
   References .................................................. 97
5  Production of Cellulolytic Enzymes ......................... 105
   Ranjita Biswas, Abhishek Persad, and Virendra S. Bisaria
   5.1  Introduction .......................................... 106
   5.2  Hydrolytic Enzymes for Digestion of Lignocelluloses ... 107
        5.2.1  Cellulases ..................................... 107
        5.2.2  Xylanases ...................................... 108
   5.3  Desirable Attributes of Cellulase for Hydrolysis of
        Cellulose ............................................. 109
   5.4  Strategies Used for Enhanced Enzyme Production ........ 110
        5.4.1  Genetic Methods ................................ 110
        5.4.2  Process Methods ................................ 114
   5.5  Economic Outlook ...................................... 123
   5.6  Future Prospects ...................................... 123
   References ................................................. 124
6  Bioprocessing Technologies ................................. 133
   Gopal Chotani, Caroline Peres, Alexandra Schuler, and
   Peyman Moslemy
   6.1  Introduction .......................................... 134
   6.2  Cell Factory Platform ................................. 136
        6.2.1  Properties of a Biocatalyst .................... 137
        6.2.2  Recent Trends in Cell Factory Construction for
               Bioprocessing .................................. 140
   6.3  Fermentation Process .................................. 142
   6.4  Recovery Process ...................................... 147
        6.4.1  Active Dry Yeast ............................... 148
        6.4.2  Unclarified Enzyme Product ..................... 149
        6.4.3  Clarified Enzyme Product ....................... 150
        6.4.4  Bioisoprene .................................... 151
   6.5  Formulation Process ................................... 153
        6.5.1  Solid Forms .................................... 154
        6.5.2  Slurry or Paste Forms .......................... 159
        6.5.3  Liquid Forms ................................... 160
   6.6  Final Product Blends .................................. 161
   6.7  Economic Outlook and Future Prospects ................. 162
   Acknowledgment ............................................. 163
   Nomenclature ............................................... 163
   References ................................................. 163

PART II SPECIFIC COMMODITY BIOPRODUCTS

7  Ethanol from Bacteria ...................................... 169
   Hideshi Yanase
   7.1  Introduction .......................................... 170
   7.2  Heteroethanologenic Bacteria .......................... 172
        7.2.1  Escherichia coli ............................... 173
        7.2.2  Klebsiella oxytoca ............................. 177
        7.2.3  Erwinia spp. and Enterobacter asburiae ......... 178
        7.2.4  Corynebacterium glutamicum ..................... 179
        7.2.5  Thermophilic Bacteria .......................... 180
   7.3  Homoethanologenic Bacteria ............................ 183
        7.3.1  Zymomonas mobilis .............................. 184
        7.3.2  Zymobacter palmae .............................. 189
   7.4  Economic Outlook ...................................... 191
   7.5  Future Prospects ...................................... 192
   References ................................................. 193
8  Ethanol Production from Yeasts ............................. 201
   Tomohisa Hasunuma, Ryosuke Yamada, and Akihiko Kondo
   8.1  Introduction .......................................... 202
   8.2  Ethanol Production from Starchy Biomass ............... 205
        8.2.1  Starch Utilization Process ..................... 205
        8.2.2  Yeast Cell-Surface Engineering System for
               Biomass Utilization ............................ 205
        8.2.3  Ethanol Production from Starchy Biomass Using
               Amylase-Expressing Yeast ....................... 206
   8.3  Ethanol Production from Lignocellulosic Biomass ....... 208
        8.3.1  Lignocellulose Utilization Process ............. 208
        8.3.2  Fermentation of Cellulosic Materials ........... 209
        8.3.3  Fermentation of Hemicellulosic Materials ....... 215
        8.3.4  Ethanol Production in the Presence of
               Fermentation Inhibitors ........................ 217
   8.4  Economic Outlook ...................................... 218
   8.5  Future Prospects ...................................... 220
   References ................................................. 220
9  Fermentative Biobutanol Production: An Old Topic with
   Remarkable Recent Advances ................................. 227
   Yi Wang, Holger Janssen and Hans P. Blaschek
   9.1  Introduction .......................................... 228
   9.2  Butanol as a Fuel and Chemical Feedstock .............. 229
   9.3  History of ABE Fermentation ........................... 230
   9.4  Physiology of Clostridial ABE Fermentation ............ 232
        9.4.1  The Clostridial Cell Cycle ..................... 232
        9.4.2  Physiology and Enzymes of the Central
               Metabolic Pathway .............................. 233
   9.5  Abe Fermentation Processes, Butanol Toxicity, and
        Product Recovery ...................................... 236
        9.5.1  ABE Fermentation Processes ..................... 236
        9.5.2  Butanol Toxicity and Butanol-Tolerant Strains .. 237
        9.5.3  Fermentation Products Recovery ................. 238
   9.6  Metabolic Engineering and "Omics"-Analyses of
        Solventogenic Clostridia .............................. 239
        9.6.1  Development and Application of Metabolic
               Engineering Techniques ......................... 239
        9.6.2  Butanol Production by Engineered Microbes ...... 242
        9.6.3  Global Insights into Solventogenic Metabolism
               Based on "Transcriptomics" and "Proteomics" .... 245
   9.7  Economic Outlook ...................................... 246
   9.8  Current Status and Future Prospects ................... 247
   References ................................................. 251
10 Bio-based Butanediols Production: The Contributions of
   Catalysis, Metabolic Engineering, and Synthetic Biology .... 261
   Xiao-Jun Ji and He Huang
   10.1 Introduction .......................................... 262
   10.2 Bio-Based 2,3-Butanediol .............................. 264
        10.2.1 Via Catalytic Hydrogenolysis ................... 264
        10.2.2 Via Sugar Fermentation ......................... 265
   10.3  Bio-Based 1,4-Butanediol ............................. 276
        10.3.1 Via Catalytic Hydrogenation .................... 276
        10.3.2 Via Sugar Fermentation ......................... 277
   10.4 Economic Outlook ...................................... 279
   10.5 Future Prospects ...................................... 280
   Acknowledgments ............................................ 280
   References ................................................. 280
11 1,3-Propanediol ............................................ 289
   Yaqin Sun, Chengwei Ma, Hongxin Fu, Ying Mu, and Zhilong
   Xiu
   11.1 Introduction .......................................... 290
   11.2 Bioconversion of Glucose into 1,3-Propanediol ......... 291
   11.3 Bioconversion of Glycerol into 1,3-Propanediol ........ 292
        11.3.1 Strains ........................................ 292
        11.3.2 Fermentation ................................... 293
        11.3.3 Bioprocess Optimization and Control ............ 301
   11.4 Metabolic Engineering ................................. 302
        11.4.1 Stoichiometric Analysis/MFA .................... 302
        11.4.2 Pathway Engineering ............................ 304
   11.5 Down-Processing of 1,3-Propanediol .................... 308
   11.6 Integrated Processes .................................. 311
        11.6.1 Biodiesel and 1,3-Propanediol .................. 311
        11.6.2 Glycerol and 1,3-Propanediol ................... 313
        11.6.3 1,3-Propanediol and Biogas ..................... 314
   11.7 Economic Outlook ...................................... 314
   11.8 Future Prospects ...................................... 315
   Acknowledgments ............................................ 316
   A List of Abbreviations .................................... 316
   References ................................................. 317
12 Isobutanol ................................................. 327
   Bernhard J. Eikmanns and Bastian Blombach
   12.1 Introduction .......................................... 328
   12.2 The Access Code for the Microbial Production of
        Branched-Chain Alcohols: 2-Ketoacid Decarboxylase
        and an Alcohol Dehydrogenase .......................... 329
   12.3 Metabolic Engineering Strategies for Directed
        Production of Isobutanol .............................. 331
        12.3.1 Isobutanol Production with Escherichia coli .... 331
        12.3.2 Isobutanol Production with Corynebacterium
               glutamicum ..................................... 335
        12.3.3 Isobutanol Production with Bacillus subtilis ... 337
        12.3.4 Isobutanol Production with Clostridium
               cellulolyticum ................................. 339
        12.3.5 Isobutanol Production with Ralstonia eutropha .. 339
        12.3.6 Isobutanol Production with Synechococcus
               elongatus ...................................... 340
        12.3.7 Isobutanol Production with Saccharomyces
               cerevisiae ..................................... 341
   12.4 Overcoming Isobutanol Cytotoxicity .................... 341
   12.5 Process Development for the Production of Isobutanol .. 343
   12.6 Economic Outlook ...................................... 345
   12.7 Future Prospects ...................................... 346
   Abbreviations .............................................. 347
   Nomenclature ............................................... 347
   References ................................................. 349
13 Lactic Acid ................................................ 353
   Kenji Okano, Tsutomu Tanaka, and Akihiko Kondo
   13.1 History of Lactic Acid ................................ 354
   13.2 Applications of Lactic Acid ........................... 354
   13.3 Poly Lactic Acid ...................................... 354
   13.4 Conventional Lactic Acid Production ................... 356
   13.5 Lactic Acid Production From Renewable Resources ....... 357
        13.5.1 Lactic Acid Bacteria ........................... 359
        13.5.2 Escherichia coli ............................... 364
        13.5.3 Corynebacterium glutamicum ..................... 368
        13.5.4 Yeasts ......................................... 370
   13.6 Economic Outlook ...................................... 373
   13.7 Future Prospects ...................................... 374
   Nomenclature ............................................... 374
   References ................................................. 375
14 Microbial Production of 3-Hydroxypropionic Acid From
   Renewable Sources: A Green Approach as an Alternative to
   Conventional Chemistry ..................................... 381
   Vinod Kumar, Somasundar Ashok, and Sunghoon Park
   14.1 Introduction .......................................... 382
   14.2 Natural Microbial Production of 3-HP .................. 383
   14.3 Production of 3-HP from Glucose by Recombinant
        Microorganisms ........................................ 385
   14.4 Production of 3-HP from Glycerol by Recombinant
        Microorganisms ........................................ 388
        14.4.1 Glycerol Metabolism for the Production of
               3-HP and Cell Growth ........................... 389
        14.4.2 Synthesis of 3-HP from Glycerol Through the
               CoA-Dependent Pathway .......................... 390
        14.4.3 Synthesis of 3-HP From Glycerol Through the
               CoA-Independent Pathway ........................ 392
        14.4.4 Coproduction of 3-HP and PDO From Glycerol ..... 394
   14.5 Major Challenges for Microbial Production of 3-HP ..... 396
        14.5.1 Toxicity and Tolerance ......................... 396
        14.5.2 Redox Balance and By-products Formation ........ 399
        14.5.3 Vitamin В12 Supply ............................. 400
   14.6 Economic Outlook ...................................... 400
   14.7 Future Prospects ...................................... 401
        Acknowledgment ........................................ 401
        List of Abbreviations ................................. 402
        References ............................................ 402
15 Fumaric Acid Biosynthesis and Accumulation ................. 409
   Israel Goldberg and J. Stefan Rokem
   15.1 Introduction .......................................... 410
        15.1.1 Uses ........................................... 410
        15.1.2 Production ..................................... 411
   15.2 Microbial Synthesis of Fumaric Acid ................... 412
        15.2.1 Producer Organisms ............................. 412
        15.2.2 Carbon Sources ................................. 414
        15.2.3 Solid-State Fermentations ...................... 414
        15.2.4 Submerged Fermentation Conditions .............. 415
        15.2.5 Transport of Fumaric Acid ...................... 416
        15.2.6 Production Processes ........................... 416
        15.3.7 Plausible Biochemical Mechanism for Fumaric
               Acid Biosynthesis and Accumulation in
               Rhizopus ....................................... 417
        15.3.1 How Can the High Molar Yield of Fumaric Acid
               be Explained? .................................. 417
        15.3.2 Where in the Cell is the Localization of the
               Reductive Reactions of the TCA Cycle? .......... 418
        15.3.3 What is the Role of Cytosolic Fumarase in
               Fumaric Acid Accumulation in Rhizopus Strain? .. 419
   15.4 Toward Engineering Rhizopus for Fumaric Acid
        Production ............................................ 422
   15.5 Economic Outlook ...................................... 424
   15.6 Future Perspectives ................................... 427
        15.6.1 Biorefinery .................................... 427
        15.6.2 Platform Microorganisms ........................ 427
   Acknowledgment ............................................. 429
   References ................................................. 430
16 Succinic Acid .............................................. 435
   Boris Litsanov, Melanie Brocker, Marco Oldiges, and
   Michael Bott
   16.1 Succinate as an Important Platform Chemical for
        a Sustainable Bio-Based Chemistry ..................... 436
   16.2 Microorganisms for Bio-Succinate Production-
        Physiology, Metabolic Routes, and Strain Development .. 437
        16.2.1 Anaerobiospirillum succiniciproducens .......... 443
        16.2.2 Family Pasteurellaceae ......................... 444
        16.2.3 Escherichia coli ............................... 448
        16.2.4 Corynebacterium glutamicum ..................... 451
        16.2.5 Yeast-Based Producers .......................... 454
   16.3 Neutral Versus Acidic Conditions for Product
        Formation ............................................. 455
   16.4 Downstream Processing ................................. 456
   16.5 Companies Involved in Bio-Succinic Acid
        Manufacturing ......................................... 458
        16.5.1 Bioamber Inc ................................... 459
        16.5.2 Myriant Technologies LLC ....................... 459
        16.5.3 Reverdia ....................................... 462
        16.5.4 Succinity GmbH ................................. 462
   16.6 Future Prospects and Economic Outlook ................. 462
   References ................................................. 463
17 Glutamic Acid .............................................. 473
   Takashi Hirasawa and Hiroshi Shimizu
   17.1 Introduction .......................................... 474
   17.2 Glutamic Acid Production by Corynebacterium
        Glutamicum ............................................ 475
        17.2.1 Glutamic Acid Production by Corynebacterium
               Glutamicum and Its Molecular Mechanism ......... 475
        17.2.2 Metabolic Engineering of Glutamic Acid
               Production by Corynebacterium Glutamicum ....... 478
   17.3 Glutamic Acid as a Building Block ..................... 481
        17.3.1 Production of Chemicals from Glutamic Acid
               Using Microorganisms ........................... 481
        17.3.2 Production of Other Chemicals from Glutamic
               Acid ........................................... 487
   17.4 Economic Outlook ...................................... 487
   17.5 Future Prospects ...................................... 489
   List of Abbreviations ...................................... 489
   References ................................................. 489
18 Recent Advances for Microbial Production of Xylitol ........ 497
   Yong-Cheol Park, Sun-Ki Kim, and Jin-Ho Seo
   18.1 Introduction .......................................... 498
   18.2 General Principles for Biological Production of
        Xylitol ............................................... 498
   18.3 Microbial Production of Xylitol ....................... 501
        18.3.1 Carbon Sources ................................. 501
        18.3.2 Aeration ....................................... 501
        18.3.3 Optimization of Fermentation Strategies ........ 503
   18.4 Xylitol Production by Genetically Engineered
        Microorganisms ........................................ 508
        18.4.1 Construction of Xylitol-Producing Recombinant
               Saccharomyces cerevisiae ....................... 508
        18.4.2 Cofactor Engineering for Xylitol Production
               in Recombinant Saccharomyces cerevisiae ........ 510
        18.4.3 Other Recombinant Microorganisms for Xylitol
               Production ..................................... 512
   18.5 Economic Outlook ...................................... 514
   18.6 Future Prospects ...................................... 515
   Acknowledgments ............................................ 515
   Nomenclature ............................................... 515
   References ................................................. 516
19 First and Second Generation Production of Bio-Adipic Acid .. 519
   Jozef Bernhard Johann Henry van Duuren and Christoph
   Wittmann
   19.1 Introduction .......................................... 520
   19.2 Production of Bio-Adipic Acid ......................... 523
        19.2.1 Natural Formation by Microorganisms ............ 523
        19.2.2 First Generation Bio-Adipic Acid ............... 524
        19.2.3 Second Generation Bio-Adipic Acid .............. 528
   19.3 Ecological Footprint of Bio-Adipic Acid ............... 530
   19.4 Economic Outlook ...................................... 535
   19.5 Future Prospects ...................................... 536
   References ................................................. 538

INDEX ......................................................... 541


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:38 2019. Размер: 30,001 bytes.
Посещение N 1548 c 29.05.2016