Borkowski M. Theory of hyperconvex metric spaces. A beginner's guide. (Torun, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBorkowski M. Theory of hyperconvex metric spaces. A beginner's guide. - Torun: Juliusz Schauder centre for nonlinear studies Nicolaus Copernicus University, 2015. - 108 p. - (Lecture notes in nonlinear analysis; vol.14). - Bibliogr.: p.103-105. - Ind. of symbols and notions: p.107-108. - ISSN 2082-4335
Шифр: (И/В18-B78) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Contents ........................................................ 5
1  Introduction ................................................. 7
2  Preliminaries ............................................... 11
3  Extending mappings .......................................... 15
   3.1  A Hahn-Banach-type theorem ............................. 15
   3.2  Hyperconvexity and retractions ......................... 25
4  Hyperconvex geometry ........................................ 29
   4.1  Basic properties and examples .......................... 29
   4.2  Admissible sets ........................................ 30
   4.3  Baillon's intersection theorem ......................... 33
   4.4  Making hyperconvex spaces .............................. 41
   4.5  Hyperconvexity and Banach spaces ....................... 48
   4.6  Hyperconvex hull ....................................... 53
   4.7  fig.5-trees ................................................ 66
5  Fixed points ................................................ 73
   5.1  Baillon's fixed point theorem .......................... 73
   5.2  Schauder-type fixed-point theorem ...................... 75
   5.3  Krasnoselskii-type fixed-point theorem ................. 77
   5.4  Darbo-Sadovskii-type fixed-point theorem ............... 79
   5.5  Mönch-type fixed-point theorem ......................... 83
   5.6  Leray-Schauder-type fixed-point theorem ................ 85
6  Multivalued mappings in hyperconvex spaces .................. 93
   6.1  Basic notions .......................................... 93
   6.2  Selection theorems ..................................... 94
   6.3  Fixed point theorems ................................... 98
Bibliography .................................................. 103
Index of symbols and notions .................................. 107


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:34 2019. Размер: 5,718 bytes.
Посещение N 1308 c 10.05.2016