Preface to the First Edition ................................. xvii
Preface to the Second Edition ................................. xxi
A Note to the Reader ........................................ xxiii
Chapter I. Materials: Structure, Properties, and Performance
1.1 Introduction ............................................... 1
1.2 Monolithic, Composite, and Hierarchical Materials .......... 3
1.3 Structure of Materials .................................... 15
1.3.1 Crystal Structures ................................. 16
1.3.2 Metals ............................................. 19
1.3.3 Ceramics ........................................... 25
1.3.4 Glasses ............................................ 30
1.3.5 Polymers ........................................... 31
1.3.6 Liquid Crystals .................................... 39
1.3.7 Biological Materials and Biomaterials .............. 40
1.3.8 Porous and Cellular Materials ...................... 44
1.3.9 Nano- and Microstructure of Biological Materials ... 45
1.3.10 The Sponge Spicule: An Example of a Biological
Material ........................................... 56
1.3.11 Active (or Smart) Materials ........................ 57
1.3.12 Electronic Materials ............................... 58
1.3.13 Nanotechnology ..................................... 60
1.4 Strength of Real Materials ................................ 61
Suggested Reading ......................................... 64
Exercises ................................................. 65
Chapter 2. I Elasticity and Viscoelasticity .................... 71
2.1 Introduction .............................................. 71
2.2 Longitudinal Stress and Strain ............................ 72
2.3 Strain Energy (or Deformation Energy) Density ............. 77
2.4 Shear Stress and Strain ................................... 80
2.5 Poisson's Ratio ........................................... 83
2.6 More Complex States of Stress ............................. 85
2.7 Graphical Solution of a Biaxial State of Stress: the
Möhr Circle ............................................... 89
2.8 Pure Shear: Relationship between G and E .................. 95
2.9 Anisotropic Effects ....................................... 96
2.10 Elastic Properties of Polycrystals ....................... 107
2.11 Elastic Properties of Materials .......................... 110
2.11.1 Elastic Properties of Metals ...................... 111
2.11.2 Elastic Properties of Ceramics .................... 111
2.11.3 Elastic Properties of Polymers .................... 116
2.11.4 Elastic Constants of Unidirectional Fiber
Reinforced Composite .............................. 117
2.12 Viscoelasticity .......................................... 120
2.12.1 Storage and Loss Moduli ........................... 124
2.13 Rubber Elasticity ........................................ 126
2.14 Mooney-Rivlin Equation ................................... 131
2.15 Elastic Properties of Biological Materials ............... 134
2.15.1 Blood Vessels ..................................... 134
2.15.2 Articular Cartilage ............................... 137
2.15.3 Mechanical Properties at the Nanometer Level ...... 140
2.16 Elastic Properties of Electronic Materials ............... 143
2.17 Elastic Constants and Bonding ............................ 145
Suggested Reading ........................................ 155
Exercises ................................................ 155
Chapter 3. Plasticity ......................................... 161
3.1 Introduction ............................................. 161
3.2 Plastic Deformation in Tension ........................... 163
3.2.1 Tensile Curve Parameters .......................... 171
3.2.2 Necking ........................................... 172
3.2.3 Strain Rate Effects ............................... 176
3.3 Plastic Deformation in Compression Testing ............... 183
3.4 The Bauschunger Effect ................................... 187
3.5 Plastic Deformation of Polymers .......................... 188
3.5.1 Stress-Strain Curves .............................. 188
3.5.2 Glassy Polymers ................................... 189
3.5.3 Semicrystalline Polymers .......................... 190
3.5.4 Viscous Flow ...................................... 191
3.5.5 Adiabatic Heating ................................. 192
3.6 Plastic Deformation of Glasses ........................... 193
3.6.1 Microscopic Deformation Mechanism ................. 195
3.6.2 Temperature Dependence and Viscosity .............. 197
3.7 Flow, Yield, and Failure Criteria ........................ 199
3.7.1 Maximum-Stress Criterion (Rankine) ................ 200
3.7.2 Maximum-Shear-Stress Criterion (Tresca) ........... 200
3.7.3 Maximum-Distortion-Energy Criterion (von Mises) ... 201
3.7.4 Graphical Representation and Experimental
Verification of Rankine, Tresca, and von Mises
Criteria .......................................... 201
3.7.5 Failure Criteria for Brittle Materials ............ 205
3.7.6 Yield Criteria for Ductile Polymers ............... 209
3.7.7 Failure Criteria for Composite Materials .......... 211
3.7.8 Yield and Failure Criteria for Other Anisotropic
Materials ......................................... 213
3.8 Hardness ................................................. 214
3.8.1 Macroindentation Tests ............................ 216
3.8.2 Microindentation Tests ............................ 221
3.8.3 Nanoindentation ................................... 225
3.9 Formability: Important Parameters ........................ 229
3.9.1 Plastic Anisotropy ................................ 231
3.9.2 Punch-Stretch Tests and Forming-Limit Curves
(or Keeler-Goodwin Diagrams) ...................... 232
3.10 Muscle Force ............................................. 237
3.11 Mechanical Properties of Some Biological Materials ....... 241
Suggested Reading ........................................ 245
Exercises ................................................ 246
Chapter 4. Imperfections: Point and Line Defects .............. 251
4.1 Introduction ............................................. 251
4.2 Theoretical Shear Strength ............................... 252
4.3 Atomic or Electronic Point Defects ....................... 254
4.3.1 Equilibrium Concentration of Point Defects ........ 256
4.3.2 Production of Point Defects ....................... 259
4.3.3 Effect of Point Defects on Mechanical Properties .. 260
4.3.4 Radiation Damage .................................. 261
4.3.5 Ion Implantation .................................. 265
4.4 Line Defects ............................................. 266
4.4.1 Experimental Observation of Dislocations .......... 270
4.4.2 Behavior of Dislocations .......................... 273
4.4.3 Stress Field Around Dislocations .................. 275
4.4.4 Energy of Dislocations ............................ 278
4.4.5 Force Required to Bow a Dislocation ............... 282
4.4.6 Dislocations in Various Structures ................ 284
4.4.7 Dislocations in Ceramics .......................... 293
4.4.8 Sources of Dislocations ........................... 298
4.4.9 Dislocation Pileups ............................... 302
4.4.10 Intersection of Dislocations ...................... 304
4.4.11 Deformation Produced by Motion of Dislocations
(Orowan's Equation) ............................... 306
4.4.12 The Peierls-Nabarro Stress ........................ 309
4.4.13 The Movement of Dislocations: Temperature and
Strain Rate Effects ............................... 310
4.4.14 Dislocations in Electronic Materials .............. 313
Suggested Reading ........................................ 316
Exercises ................................................ 317
Chapter 5. Imperfections: Interfacial and Volumetric
Defects ....................................................... 321
5.1 Introduction ............................................. 321
5.2 Grain Boundaries ......................................... 321
5.2.1 Tilt and Twist Boundaries ......................... 326
5.2.2 Energy of a Grain Boundary ........................ 328
5.2.3 Variation of Grain-Boundary Energy with
Misorientation .................................... 330
5.2.4 Coincidence Site Lattice (CSL) Boundaries ......... 332
5.2.5 Grain-Boundary Triple Junctions ................... 334
5.2.6 Grain-Boundary Dislocations and Ledges ............ 334
5.2.7 Grain Boundaries as a Packing of Polyhedral
Units ............................................. 336
5.3 Twinning and Twin Boundaries ............................. 336
5.3.1 Crystallography and Morphology .................... 337
5.3.2 Mechanical Effects ................................ 341
5.4 Grain Boundaries in Plastic Deformation (Grain-size
Strengthening) ........................................... 345
5.4.1 Hall-Petch Theory ................................. 348
5.4.2 Cottrell's Theory ................................. 349
5.4.3 Li's Theory ....................................... 350
5.4.4 Meyers-Ashworth Theory ............................ 351
5.5 Other Internal Obstacles ................................. 353
5.6 Nanocrystalline Materials ................................ 355
5.7 Volumetric or Tridimensional Defects ..................... 358
5.8 Imperfections in Polymers ................................ 361
Suggested Reading ........................................ 364
Exercises ................................................ 364
Chapter 6. Geometry of Deformation and Work-Hardening ......... 369
6.1 Introduction ............................................. 369
6.2 Geometry of Deformation .................................. 373
6.2.1 Stereographic Projections ......................... 373
6.2.2 Stress Required for Slip .......................... 374
6.2.3 Shear Deformation ................................. 380
6.2.4 Slip in Systems and Work-Hardening ................ 381
6.2.5 Independent Slip Systems in Polycrystals .......... 384
6.3 Work-Hardening in Polycrystals ........................... 384
6.3.1 Taylor's Theory ................................... 386
6.3.2 Seeger's Theory ................................... 388
6.3.3 Kuhlmann-Wilsdorfs Theory ......................... 388
6.4 Softening Mechanisms ..................................... 392
6.5 Texture Strengthening .................................... 395
Suggested Reading ........................................ 399
Exercises ................................................ 399
Chapter 7. Fracture: Macroscopic Aspects ...................... 404
7.1 Introduction ............................................. 404
7.2 Theorectical Tensile Strength ............................ 406
7.3 Stress Concentration and Griffith Criterion of
Fracture ................................................. 409
7.3.1 Stress Concentrations ............................. 409
7.3.2 Stress Concentration Factor ....................... 409
7.4 Griffith Criterion ....................................... 416
7.5 Crack Propagation with Plasticity ........................ 419
7.6 Linear Elastic Fracture Mechanics ........................ 421
7.6.1 Fracture Toughness ................................ 422
7.6.2 Hypotheses of LEFM ................................ 423
7.6.3 Crack-Tip Separation Modes ........................ 423
7.6.4 Stress Field in an Isotropic Material in the
Vicinity of a Crack Tip ........................... 424
7.6.5 Details of the Crack-Tip Stress Field in Mode I ... 425
7.6.6 Plastic-Zone Size Correction ...................... 428
7.6.7 Variation in Fracture Toughness with Thickness .... 431
7.7 Fracture Toughness Parameters ............................ 434
7.7.1 Crack Extension Force G ........................... 434
7.7.2 Crack Opening Displacement ........................ 437
7.7.3 J Integral ........................................ 440
7.7.4 R Curve ........................................... 443
7.7.5 Relationships among Different Fracture Toughness
Parameters ........................................ 444
7.8 Importance of Kic in Practice ............................ 445
7.9 Post-Yield Fracture Mechanics ............................ 448
7.10 Statistical Analysis of Failure Strength ................. 449
Appendix: Stress Singularity at Crack Tip ................ 458
Suggested Reading ........................................ 460
Exercises ................................................ 460
Chapter 8. Fracture: Microscopic Aspects ...................... 466
8.1 Introduction ............................................. 466
8.2 Fracture in Metals ....................................... 468
8.2.1 Crack Nucleation .................................. 468
8.2.2 Ductile Fracture .................................. 469
8.2.3 Brittle, or Cleavage, Fracture .................... 480
8.3 Fracture in Ceramics ..................................... 487
8.3.1 Microstructural Aspects ........................... 487
8.3.2 Effect of Grain Size on Strength of Ceramics ...... 494
8.3.3 Fracture of Ceramics in Tension ................... 496
8.3.4 Fracture in Ceramics Under Compression ............ 499
8.3.5 Thermally Induced Fracture in Ceramics ............ 504
8.4 Fracture in Polymers ..................................... 507
8.4.1 Brittle Fracture .................................. 507
8.4.2 Crazing and Shear Yielding ........................ 508
8.4.3 Fracture in Semicrystalline and Crystalline
Polymers .......................................... 512
8.4.4 Toughness of Polymers ............................. 513
8.5 Fracture and Toughness of Biological Materials ........... 517
8.6 Fracture Mechanism Maps .................................. 521
Suggested Reading ........................................ 521
Exercises ................................................ 521
Chapter 9. Fracture Testing ................................... 525
9.1 Introduction ............................................. 525
9.2 Impact Testing ........................................... 525
9.2.1 Charpy Impact Test ................................ 526
9.2.2 Drop-Weight Test .................................. 529
9.2.3 Instrumented Charpy Impact Test ................... 531
9.3 Plane-Strain Fracture Toughness Test ..................... 532
9.4 Crack Opening Displacement Testing ....................... 537
9.5 J-Integral Testing ....................................... 538
9.6 Flexure Test ............................................. 540
9.6.1 Three-Point Bend Test ............................. 541
9.6.2 Four-Point Bending ................................ 542
9.6.3 Interlaminar Shear Strength Test .................. 543
9.7 Fracture Toughness Testing of Brittle Materials .......... 545
9.7.1 Chevron Notch Test ................................ 547
9.7.2 Indentation Methods for Determining Toughness ..... 549
9.8 Adhesion of Thin Films to Substrates ..................... 552
Suggested Reading ........................................ 553
Exercises ................................................ 553
Chapter 10 Solid Solution, Precipitation, and Dispersion
Strengthening ................................................. 558
10.1 Introduction ............................................. 558
10.2 Solid-Solution Strengthening ............................. 559
10.2.1 Elastic Interaction ............................... 560
10.2.2 Other Interactions ................................ 564
10.3 Mechanical Effects Associated with Solid Solutions ....... 564
10.3.1 Weil-Defined Yield Point in the Stress-Strain
Curves ............................................ 565
10.3.2 Plateau in the Stress-Strain Curve and Lьders
Band .............................................. 566
10.3.3 Strain Aging ...................................... 567
10.3.4 Serrated Stress-Strain Curve ...................... 568
10.3.5 Snoek Effect ...................................... 569
10.3.6 Blue Brittleness .................................. 570
10.4 Precipitation- and Dispersion-Hardening .................. 571
10.5 Dislocation-Precipitate Interaction ...................... 579
10.6 Precipitation in Microalloyed Steels ..................... 585
10.7 Dual-Phase Steels ........................................ 590
Suggested Reading ........................................ 590
Exercises ................................................ 591
Chapter 11. Martensitic Transformation ........................ 594
11.1 Introduction ............................................. 594
11.2 Structures and Morphologies of Martensite ................ 594
11.3 Strength of Martensite ................................... 600
11.4 Mechanical Effects ....................................... 603
11.5 Shape-Memory Effect ...................................... 608
11.5.1 Shape-Memory Effect in Polymers ................... 614
11.6 Martensitic Transformation in Ceramics ................... 614
Suggested Reading ........................................ 618
Exercises ................................................ 619
Chapter 12 Special Materials: Intermetallics and Foams ........ 621
12.1 Introduction ............................................. 621
12.2 Suicides ................................................. 621
12.3 Ordered Intermetallics ................................... 622
12.3.1 Dislocation Structures in Ordered Intermetallics .. 624
12.3.2 Effect of Ordering on Mechanical Properties ....... 628
12.3.3 Ductility of Intermetallics ....................... 634
12.4 Cellular Materials ....................................... 639
12.4.1 Structure ......................................... 639
12.4.2 Modeling of the Mechanical Response ............... 639
12.4.3 Comparison of Predictions and Experimental
Results ........................................... 645
12.4.4 Syntactic Foam .................................... 645
12.4.5 Plastic Behavior of Porous Materials .............. 646
Suggested Reading ........................................ 650
Exercises ................................................ 650
Chapter 13. Creep and Superplasticity ......................... 653
13.1 Introduction ............................................. 653
13.2 Correlation and Extrapolation Methods .................... 659
13.3 Fundamental Mechanisms Responsible for Creep ............. 665
13.4 Diffusion Creep .......................................... 666
13.5 Dislocation (or Power Law) Creep ......................... 670
13.6 Dislocation Glide ........................................ 673
13.7 Grain-Boundary Sliding ................................... 675
13.8 Deformation-Mechanism (Weertman-Ashbyj Maps .............. 676
13.9 Creep-Induced Fracture ................................... 678
13.10 Heat-Resistant Materials ................................ 681
13.11 Creep in Polymers ....................................... 688
13.12 Diffusion-Related Phenomena in Electronic Materials ..... 695
13.13 Superplasticity ......................................... 697
Suggested Reading ........................................ 705
Exercises ................................................ 705
Chapter 14. Fatigue ........................................... 713
14.1 Introduction ............................................. 713
14.2 Fatigue Parameters and S-N (Wöhler) Curves ............... 714
14.3 Fatigue Strength or Fatigue Life ......................... 716
14.4 Effect of Mean Stress on Fatigue Life .................... 719
14.5 Effect of Frequency ...................................... 721
14.6 Cumulative Damage and Life Exhaustion .................... 721
14.7 Mechanisms of Fatigue .................................... 725
14.7.1 Fatigue Crack Nucleation .......................... 725
14.7.2 Fatigue Crack Propagation ......................... 730
14.8 Linear Elastic Fracture Mechanics Applied to Fatigue ..... 735
14.8.1 Fatigue of Biomaterials .......................... 744
14.9 Hysteretic Heating in Fatigue ............................ 746
14.10 Environmental Effects in Fatigue ........................ 748
14.11 Fatigue Crack Closure ................................... 748
14.12 The Two-Parameter Approach .............................. 749
14.13 The Short-Crack Problem in Fatigue ...................... 750
14.14 Fatigue Testing ......................................... 751
14.14.1 Conventional Fatigue Tests ....................... 751
14.14.2 Rotating Bending Machine ......................... 751
14.14.3 Statistical Analysis of S-N Curves ............... 753
14.14.4 Nonconventional Fatigue Testing .................. 753
14.14.5 Servohydraulic Machines .......................... 755
14.14.6 Low-Cycle Fatigue Tests .......................... 756
14.14.7 Fatigue Crack Propagation Testing ................ 757
Suggested Reading ........................................ 758
Exercises ................................................ 759
Chapter 15. Composite Materials ............................... 765
15.1 Introduction ............................................. 765
15.2 Types of Composites ...................................... 765
15.3 Important Reinforcements and Matrix Materials ............ 767
15.3.1 Microstructural Aspects and Importance of the
Matrix ............................................ 769
15.4 Interfaces in Composites ................................. 770
15.4.1 Crystallographic Nature of the Fiber-Matrix
Interface ......................................... 771
15.4.2 Interfacial Bonding in Composites ................. 772
15.4.3 Interfacial Interactions .......................... 773
15.5 Properties of Composites ................................. 774
15.5.1 Density and Heat Capacity ......................... 775
15.5.2 Elastic Moduli .................................... 775
15.5.3 Strength .......................................... 780
15.5.4 Anisotropic Nature of Fiber Reinforced
Composites ........................................ 783
15.5.5 Aging Response of Matrix in MMCs .................. 785
15.5.6 Toughness ......................................... 785
15.6 Load Transfer from Matrix to Fiber ....................... 788
15.6.1 Fiber and Matrix Elastic .......................... 789
15.6.2 Fiber Elastic and Matrix Plastic .................. 792
15.7 Fracture in Composites ................................... 794
15.7.1 Single and Multiple Fracture ...................... 795
15.7.2 Failure Modes in Composites ....................... 796
15.8 Some Fundamental Characteristics of Composites ........... 799
15.8.1 Heterogeneity .................................... 799
15.8.2 Anisotropy ........................................ 799
15.8.3 Shear Coupling .................................... 801
15.8.4 Statistical Variation in Strength ................. 802
15.9 Functionally Graded Materials ............................ 803
15.10 Applications ............................................ 803
15.10.1 Aerospace Applications ........................... 803
15.10.2 Nonaerospace Applications ........................ 804
15.11 Laminated Composites .................................... 806
Suggested Reading ........................................ 809
Exercises ................................................ 810
Chapter 16. Environmental Effects ............................. 815
16.1 Introduction ............................................. 815
16.2 Electrochemical Nature of Corrosion in Metals ............ 815
16.2.1 Galvanic Corrosion ................................ 816
16.2.2 Uniform Corrosion ................................. 817
16.2.3 Crevice corrosion ................................. 817
16.2.4 Pitting Corrosion ................................. 818
16.2.5 Intergranular Corrosion ........................... 818
16.2.6 Selective leaching ................................ 819
16.2.7 Erosion-Corrosion ................................. 819
16.2.8 Radiation Damage .................................. 819
16.2.9 Stress Corrosion .................................. 819
16.3 Oxidation of metals ...................................... 819
16.4 Environmentally Assisted Fracture in Metals .............. 820
16.4.1 Stress Corrosion Cracking (SCC) ................... 820
16.4.2 Hydrogen Damage in Metals ......................... 824
16.4.3 Liquid and Solid Metal Embrittlement .............. 830
16.5 Environmental Effects in Polymers ........................ 831
16.5.1 Chemical or Solvent Attack ........................ 832
16.5.2 Swelling .......................................... 832
16.5.3 Oxidation ......................................... 833
16.5.4 Radiation Damage .................................. 834
16.5.5 Environmental Crazing ............................. 835
16.5.6 Alleviating the Environmental Damage in Polymers .. 836
16.6 Environmental Effects in Ceramics ........................ 836
16.6.1 Oxidation of Ceramics ............................. 839
Suggested Reading ........................................ 840
Exercises ................................................ 840
Appendixes .................................................... 843
Index ......................................................... 851
|