Michel V. Lectures on constructive approximation: Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. (New York 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMichel V. Lectures on constructive approximation: Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. - New York: Birkhäuser: Springer, 2013. - xvi, 326 p.: ill. - (Applied and numerical harmonic analysis). - Bibliogr.: p.307-315. - Ind.: p.317-326. - ISBN 978-0-8176-8402-0
Шифр: (И/В16-М65) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction: The Problem to be Solved ....................... 1

Part I Basics

2  Basic Fundamentals: What You Need to Know ................... 13
   2.1  Preliminaries .......................................... 13
   2.2  Basics of Functional Analysis .......................... 14
   2.3  Curves and Surfaces .................................... 26
3  Approximation of Functions on the Real Line ................. 31
   3.1  Orthogonal Basis Systems on Intervals .................. 31
   3.2  A Brief Introduction to Cubic Splines .................. 56
   3.3  An Approximate Identity for R .......................... 63
   3.4  The Haar Wavelet ....................................... 69
   3.5  A Remark on Higher Dimensions: The Tensor Product
        Ansatz ................................................. 80
   3.6  Questions for Understanding ............................ 81

Part II Approximation on the Sphere

4  Basic Aspects ............................................... 85
   4.1  Some Fundamental Tools ................................. 85
   4.2  Questions for Understanding ............................ 96
5  Fourier Analysis ............................................ 97
   5.1  Spherical Harmonics .................................... 97
   5.2  Fully Normalized Spherical Harmonics .................. 126
   5.3  Point Grids ........................................... 130
   5.4  Questions for Understanding ........................... 142
6  Spherical Splines .......................................... 145
   6.1  Reproducing Kernel Hilbert Spaces ..................... 145
   6.2  Spherical Sobolev Spaces .............................. 149
   6.1  Spherical Splines ..................................... 101
   6.4  Some Remarks .......................................... 177
        6.4.1  More General Data .............................. 177
        6.4.2  The Spline Matrix .............................. 178
        6.4.3  Another Remark on Point Grids .................. 180
   6.5  Questions for Understanding ........................... 181
7  Spherical Wavelet Analysis ................................. 183
   7.1  Convolutions .......................................... 184
   7.2  Scaling Functions ..................................... 190
   7.3  Wavelets .............................................. 210
   7.4  Numerical Integration on the Sphere (Very Briefly) .... 230
   7.5  Questions for Understanding ........................... 237
8  Spherical Slepian Functions ................................ 239
   8.1  Spherical Slepian Functions ........................... 239
   8.2  Questions for Understanding ........................... 245

Part III Approximation on the 3D Ball

9  Orthonormal Bases .......................................... 249
   9.1  Construction and Basic Properties ..................... 249
   9.2  Eigenfunctions of Differential Operators .............. 260
   9.3  Questions for Understanding ........................... 264
10 Splines .................................................... 265
   10.1 Sobolev Spaces ........................................ 266
   10.2 Splines on the 3D Ball ................................ 276
   10.3 Questions for Understanding ........................... 287
11 Wavelets for Inverse Problems on the 3D Ball ............... 289
   11.1 The Problem ........................................... 289
   11.2 Convolutions .......................................... 291
   11.3 Scaling Functions ..................................... 293
   11.4 Wavelets .............................................. 297
   11.5 Questions for Understanding ........................... 302
12 The Regularized Functional Matching Pursuit ................ 303
   12.1 The Idea .............................................. 303
   12.2 Questions for Understanding ........................... 305


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:16 2019. Размер: 7,929 bytes.
Посещение N 1593 c 26.01.2016