Meier G.H. Thermodynamics of surfaces and interfaces: concepts in inorganic materials (Cambridge, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMeier G.H. Thermodynamics of surfaces and interfaces: concepts in inorganic materials. - Cambridge: Cambridge university press: Materials research society, 2014. - xv, 238 p.: ill. - Incl. bibl. ref. - Ind.: p.237-238. - ISBN 978-0-521-87908-8
Шифр: (И/В37-М50) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgements ............................................... xv

1  Summary of basic thermodynamic concepts ...................... 1
   1.1  Basic thermodynamics .................................... 1
        1.1.1  Extensive and molar properties of a
               thermodynamic system ............................. 1
        7.7.1  The first law .................................... 3
        1.1.1  The second law ................................... 5
        1.1.2  The third law .................................... 6
        1.1.3  Combined first and second laws ................... 7
   1.2  Multicomponent systems - solution thermodynamics ....... 10
        7.2.1  The ideal-solution model ........................ 12
        7.2.2  Non-ideal solutions ............................. 12
   1.3  Multiphase equilibria .................................. 17
        1.3.1  Unary systems ................................... 18
        7.3.1  Multicomponent systems .......................... 21
   1.4  Chemical reactions ..................................... 30
        7.4.7 Chemical reactions involving gases ............... 32
   1.5  Summary ................................................ 34
   1.6  References ............................................. 34
   1.7  Study problems ......................................... 35
   1.8  Selected thermodynamic data references ................. 38
2  Introduction to surface quantities .......................... 40
   2.1 Description of a surface/interface ...................... 40
   2.2  Thermodynamic properties ............................... 43
        2.2.1  Creation of a surface ........................... 45
        2.2.2  Extension of a surface .......................... 45
        2.2.3  Relations among surface quantities .............. 47
        2.2.4  Relations between у and о ....................... 50
        2.2.5  Determination of surface parameters ............. 54
        2.2.6  Description of surface contributions to the
               thermodynamic description of material systems ... 67
   2.3  Summary ................................................ 69
   2.4  References ............................................. 70
   2.5  Study problems ......................................... 71
3  Equilibrium at intersections of surfaces: wetting ........... 73
   3.1  Non-reactive versus reactive wetting ................... 73
   3.2  Non-reactive wetting ................................... 74
        3.2.1  The contact angle on an ideal solid surface
               (Young's equation) .............................. 74
        3.2.2  Work of adhesion ................................ 77
        3.2.3  Capillary rise .................................. 78
        3.2.4  Small droplets .................................. 80
        3.2.5  Non-ideal surfaces .............................. 80
   3.3  Reactive wetting ....................................... 87
   3.4  Selected values of interfacial energies ................ 91
   3.5  Summary ................................................ 91
   3.6  References ............................................. 91
   3.7  Study problems ......................................... 92
4  Surfaces of crystalline solids .............................. 94
   4.1  Surface energy for crystalline solids .................. 94
        4.1.1 Equilibrium crystal shape ........................ 98
   4.2  Internal boundaries ................................... 102
        4.2.1  Types of grain boundaries ...................... 102
        4.2.2  Intersections of grain boundaries with free
               surfaces ....................................... 113
        4.2.3  Intersections of grain boundaries .............. 115
   4.3  Faceting .............................................. 116
   4.4  Measurement of surface and grain-boundary energies .... 120
        4.4.1  The zero-creep technique ....................... 120
        4.4.2  The multiphase-equilibrium (MPE) technique ..... 123
        4.4.3  Selected values of high-angle grain-boundary
               energies ....................................... 124
   4.5  Summary ............................................... 124
   4.6  References ............................................ 125
   4.7  Study problems ........................................ 126
5  Interphase interfaces ...................................... 128
   5.1  Interface classifications ............................. 128
        5.1.1  Coherent interfaces ............................ 128
        5.1.2  Semicoherent interfaces ........................ 132
        5.7.1  Incoherent interfaces .......................... 133
        5.1.1  Interface mobility ............................. 133
   5.2  Interaction of second phases with grain boundaries .... 134
   5.3  Thin-film formation ................................... 135
        5.3.7 Growth of thin oxide films ...................... 137
        5.3.2 Formation of metal films by evaporation ......... 143
   5.4  Summary ............................................... 145
   5.5  References ............................................ 146
   5.6  Study problems ........................................ 147
6  Curved surfaces ............................................ 148
   6.1  Derivation of the Laplace equation .................... 148
        6.7.1  Techniques that use the Laplace equation to
               measure surface energy ......................... 151
   6.2  The effect of curvature on the chemical potential ..... 153
        6.2.1  Grain growth ................................... 156
   6.3  Phase equilibria in one-component systems ............. 158
        6.3.1  The relation between μS and μL (or μV) ......... 158
        6.3.2  The vapor pressure of a pure liquid ............ 160
        6.3.3  The vapor pressure of an isotropic solid
               particle ....................................... 162
        6.3.4  The melting point of a one-component solid ..... 164
   6.4  Nucleation ............................................ 165
        6.4.1  Homogeneous nucleation ......................... 166
        6.4.2  Heterogeneous nucleation ....................... 168
   6.5  Phase equilibria in multicomponent systems ............ 168
        6.5.1  The vapor pressure of a component over a
               multicomponent liquid .......................... 168
        6.5.2  The effect of particle size on solubility ...... 170
        6.5.3  Precipitate coarsening ......................... 176
   6.6  Summary ............................................... 179
   6.7  References ............................................ 180
   6.8  Study problems ........................................ 181
7  Adsorption ................................................. 184
   7.1  The Gibbs adsorption equation ......................... 186
   7.1.1 Applications of the Gibbs adsorption equation ........ 188
   7.2  The Langmuir adsorption equation ...................... 191
   7.3  The effects of adsorption on the fracture of solids ... 195
        7.3.1  The effect of water vapor on the fracture of
               ceramics ....................................... 195
        7.3.2  The effect of grain-boundary segregation on
               the fracture of metals ......................... 198
   7.4  Summary ............................................... 207
   7.5  References ............................................ 207
   1.4  Study problem ......................................... 209
8  Adhesion ................................................... 210
   8.1 The origin of stresses in multilayer systems ........... 211
        8.1.1  Formation stresses ............................. 211
        8.1.2  Thermalstresses ................................ 212
        8.1.3  Applied stress ................................. 214
   8.2  Response to stress .................................... 215
        8.2.1  The relation of the fracture energy and the
               work of adhesion ............................... 218
        8.2.2  The effect of adsorption on the work of
               adhesion and fracture energy ................... 220
   8.3  Case study - protective layers on superalloys in
        gas turbines .......................................... 221
        8.3.1  Formation and adhesion of protective oxide
               layers ......................................... 221
        8.3.2  Multilayer systems - thermal barrier coatings .. 226
   8.4  Summary ............................................... 233
   8.5  References ............................................ 234
   8.6  Study problems ........................................ 235

Index ......................................................... 237


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:16 2019. Размер: 12,879 bytes.
Посещение N 1574 c 12.01.2016