Preface and acknowledgments ................................... xix
List of symbols ............................................... xxi
1 Introduction and synopsis .................................... 1
1.1 Scope and importance of thermodynamics .................. 1
1.2 Bases and validity of thermodynamics .................... 1
1.3 Goals of the book ....................................... 2
1.4 Macroscopic, microscopic, and molecular aspects of
thermodynamics .......................................... 3
1.5 Summary of the key principles of thermodynamics ......... 4
1.6 Equilibrium and non-equilibrium effects in
thermodynamic analysis .................................. 5
1.7 Overview of the book .................................... 6
1.7.1 What this book covers ............................ 6
1.7.2 What this book does not cover ................... 10
1.8 Some metrics for learning and understanding
thermodynamics ......................................... 12
2 Problems and concepts at the interface of mechanics and
thermodynamics .............................................. 14
2.1 Spatial distributions in gravity of pressure,
density, and temperature for liquids or gases .......... 14
2.1.1 Pressure distributions in incompressible
liquids at a fixed temperature .................. 14
2.1.2 Compressible liquids ............................ 17
2.1.3 Pressure, density, and temperature
distributions in gases .......................... 18
2.1.4 Summary ......................................... 26
2.2 A review of key concepts and some principles of
mechanics: length, time, and mass ...................... 27
2.3 A review of forces: definitions and types .............. 28
2.4 Area, volume, velocity, and acceleration ............... 30
2.5 Pressure and stress .................................... 32
2.6 Mechanical work ........................................ 35
2.7 Mechanical energy: potential energy and kinetic
energy ................................................. 37
2.8 Energy units ........................................... 39
2.9 Other forms of work and of energy ...................... 40
Summary ..................................................... 41
Study questions ............................................. 42
Problems .................................................... 44
3 Phases, interfaces, dispersions, and the first three
principles of thermodynamics ................................ 47
3.1 Introduction ........................................... 47
3.2 "Equilibrium" and "non-equilibrium" phases ............. 47
3.3 Types of phases: gases, liquids, and solids ............ 50
3.3.1 Amorphous solid phases ........................... 52
3.4 Other types of phases: liquid crystals ................. 53
3.5 Phase transitions and phase equilibria ................. 55
3.6 Phase boundaries, interfacial regions, interfaces,
and surfaces ........................................... 58
3.7 Biphasic dispersions, colloidal dispersions
("colloids") and dispersions of nanoparticles .......... 59
3.8 Extensive and intensive properties of a phase .......... 61
3.9 The first two major principles of thermodynamics ....... 61
3.10 The Zeroth Law and the concept of the empirical
temperature в .......................................... 62
3.11 Equations of state ..................................... 65
3.12 Ideal gas temperature .................................. 66
Summary ..................................................... 67
Study questions ............................................. 67
Problems .................................................... 69
4 Internal energy, the First Law, heat, conservation of
total energy, mass and energy balances, enthalpy, and
heat capacities ............................................. 70
4.1 Internal energy, U, the First Law, and heat ............ 70
4.1.1 Joule's experiments. Evidence for the
existence of internal energy .................... 70
4.1.2 The first postulate of the First Law ............ 71
4.1.3 The first generalization of the First Law
and the principle of conservation of total
energy .......................................... 72
4.1.4 Definition and measurement of heat, Q, and
further generalizations of the First Law ........ 72
4.1.5 Generalized First Law and generalized energy
conservation principle for closed systems in
time derivative form and in differential form ... 75
4.1.6 Exact differentials of state thermodynamic
functions and inexact differentials of path-
dependent thermodynamic quantities .............. 76
4.2 Convection of energy, convective heat transfer, and
mass/energy balances for open systems ................. 83
4.2.1 Convection of energy ............................ 83
4.2.2 Mass and energy balances for open systems.
Elementary coverage ............................. 84
4.2.3 Mass and energy balances. Advanced treatment
and use of the enthalpy function ................ 89
4.2.4 Enthalpy function. Definition and measurement ... 92
4.3 Heat capacities ........................................ 93
4.3.1 Definitions and measurements of heat
capacities ...................................... 93
4.3.2 Values of measured heat capacities for various
systems, gases, liquids and solids, and their
interpretations ................................. 95
Summary ..................................................... 99
Studv questions ............................................ 100
Problems ................................................... 102
5 Equations of state for one-component and multicomponent
systems .................................................... 103
5.1 Introduction and measurements ......................... 103
5.1.1 Examples of equations of state ................. 104
5.2 The ideal gas equation of state and its molecular
interpretation ........................................ 105
5.3 Nonideal gas equations of state: the van der Waals
equation and its molecular interpretation ............. 109
5.3.1 Additional notes on the van der Waals
equation of state (for the advanced student) ... 112
5.4 Vapor pressure. Definition, measurements, and
applications .......................................... 116
5.4.1 Definition and measurements .................... 116
5.4.2 Equations forp°(T) ............................. 117
5.4.3 Applications of vapor pressure data ............ 118
5.5 Use of the van der Waals equation of state to
predict vapor pressures and molar volumes of vapor
and liquid phases at equilibrium ...................... 120
5.6 Other equations of state for nonideal gases and
vapor-liquid systems .................................. 122
5.7 The corresponding states principle and generalized
correlations for gases, vapors, and liquids ........... 125
5.8 Equations of state for liquids and solids ............. 126
5.9 Specific volume and equation of state of one-
component biphasic systems. Wet steam ................. 127
5.10 Partial pressures and ideal gas mixtures .............. 129
5.11 Absolute and relative humidity of air ................. 129
5.12 Ideal and nonideal gas, liquid, and solid solutions.
Molar volume, volume of mixing, and partial molar
volumes ............................................... 131
5.13 Equations of state for gas mixtures and vapor-liquid
biphasic mixtures ..................................... 135
Summary .................................................... 135
Study questions ............................................ 136
Problems ................................................... 137
6 Applications of the mass and energy balances and the
equations of state to several classes of thermodynamic
problems ................................................... 139
6.1 Introduction .......................................... 139
6.2 Closed systems. Expansion of an ideal gas ............. 140
6.3 Closed systems. Problems with nonideal gases,
liquids, and wet steam ................................ 147
6.3.1 Isothermal, reversible, non-adiabatic
expansion of a nonideal gas .................... 147
6.3.2 Mixing in an isolated vessel ................... 147
6.3.3 Heating of a liquid in an electrical pot.
The "coffee-pot" problem ....................... 150
6.4 Open systems at steady state or unsteady state.
General guidelines .................................... 155
6.5 The "coffee-pot" problem for an open evaporating
system ................................................ 157
6.6 Steady-state heat exchanger problems .................. 158
6.6.1 Introduction and general equations ............. 158
6.6.2 Cocurrent flow of ideal gases .................. 159
6.6.3 Countercurrent flow of ideal gases ............. 160
6.6.4 Cocurrent or countercurrent flow of liquids .... 160
6.6.5 Heating of a liquid using steam as hot fluid ... 161
6.6.6 Heating using superheated steam with complex
temperature patterns ........................... 161
6.6.7 Determining heat transfer coefficients of
heat exchangers ................................ 162
6.7 Throttling processes .................................. 166
6.7.1 Overview and general equations ................. 166
6.7.2 Ideal gas ...................................... 168
6.7.3 Nearly ideal gas ............................... 168
6.7.4 Wet steam at input, and a method for the
determination of steam quality ................. 169
6.8 Filling and emptying a tank with gases or liquids ..... 170
6.8.1 Overview ....................................... 170
6.8.2 Filling an empty tank with a gas from a gas
source at constant properties .................. 170
6.8.3 Other cases of tank filling or emptying ........ 173
Summary .................................................... 176
Study questions ............................................ 176
Problems ................................................... 177
7 The Second Law, absolute temperature, entropy definition
and calculation, and entropy inequality .................... 181
7.1 Introduction .......................................... 181
7.2 The experimental basis of, and need to develop, the
Second Law of thermodynamics .......................... 182
7.3 The first postulate or hypothesis of the Second Law.
Efficiency of heat engines ............................ 185
7.4 Idealized heat engines, the Carnot cycle, and
quantitative treatment of the energy efficiency of
heat engines .......................................... 186
7.5 The discovery of the thermodynamic temperature T as
a universal function of the empirical temperature θ ... 188
7.6 The discovery that T = Tideai and measurement of T .... 190
7.7 Ideal and actual efficiency of heat engines ........... 192
7.8 Using heat engines in reverse. Refrigerators air-
conditioners, and heat pumps .......................... 194
7.9 The discovery of a new state function called entropy.
Definition and measurement ............................ 198
7.10 Combination of the First and Second Laws. General
method for calculating entropy changes ................ 205
7.11 Entropy change for adiabatic reversible and for
adiabatically irreversible processes in closed
systems. The entropy inequality principle ............. 206
7.12 Summary of the various versions of the Second Law ..... 207
7.13 Entropy inequality for open systems ................... 209
Summary .................................................... 210
Study questions ............................................ 210
Problems ................................................... 211
8 Further implications of the Second Law. Introduction of
the Helmholtz free energy, Gibbs free energy, chemical
potential, and applications to phase equilibria, heat
transfer, and mass transfer ................................ 213
8.1 Introduction .......................................... 213
8.2 First introduction of the Helmholtz and Gibbs free
energy functions. First and Second Laws combined in
four versions ......................................... 213
8.3 Dependence of S, U, H,A, and G on T, p, and V.
Maxwell's relations ................................... 215
8.3.1 Entropy vs. p-V-T .............................. 215
8.3.2 Internal energy vs. p-V-T ...................... 217
8.3.3 Enthalpy vs. p-V-T ............................. 219
8.3.4 Helmholtz free energy vs. p-V-T ................ 219
8.3.5 Gibbs free energy vs. p-V-T .................... 220
8.3.6 Maxwell's relations ............................ 221
8.4 Application to the direction of heat transfer ......... 221
8.5 Direction and maximum possible work for systems at
fixed (m, T, V) or fixed (m, T, p) .................... 223
8.6 Applications to phase equilibria for one-component
systems ............................................... 226
8.7 The Clapeyron equation and the Clausius-Clapeyron
equation. How the temperature of a phase transition
varies with pressure, or how the boiling point
varies with pressure .................................. 228
8.8 Determination of vapor pressure in vapor-liquid
equilibrium with Maxwell's equal area construction .... 229
8.9 The First and Second Laws for an open multicomponent
multiphase system. Introduction of the concept of
the chemical potential ................................ 231
8.10 Direction of mass transfer and phase equilibrium in
one- and two-component systems, in one or two phases .. 234
8.11 The Gibbs phase rule .................................. 236
8.11.1 Notes .......................................... 237
8.12 Some quantitative tests of the First and Second
Laws .................................................. 238
Summary .................................................... 239
Study questions ............................................ 240
Problems ................................................... 242
9 Thermodynamic fugacity, thermodynamic activity, and other
thermodynamic functions (U, H, S, A, G, fij) of ideal
and nonideal solutions ..................................... 243
9.1 Introduction .......................................... 243
9.2 Fugacity and fugacity coefficients of one-component
gases, vapors, liquids, and solids .................... 243
9.2.1 Introduction and definition of fugacity and
fugacity coefficients .......................... 243
9.2.2 Determination of fugacity of ideal gases,
nonideal gases, and vapors ..................... 245
9.2.3 Fugacity of liquids ............................ 247
9.2.4 Dependence of fugacity on temperature and
pressure ....................................... 248
9.2.5 Summary ........................................ 248
9.3 Internal energy and enthalpy of gases, liquids, and
solid solutions ....................................... 249
9.4 Entropy and Gibbs free energy of ideal gases and
nonideal gas, liquid, and solid solutions.
Fugacities and activities in solution ................. 252
9.4.1 Introduction ................................... 252
9.4.2 Ideal gas mixtures ............................. 253
9.4.3 Fugacities and fugacity coefficients of
components of nonideal gas mixtures ............ 255
9.4.4 Activities of components in solution and the
Lewis and Randall rule ......................... 256
9.4.5 Liquid or solid solutions ...................... 257
9.4.6 New formulations of chemical potential
equations in terms of mgacities or activities .. 258
9.4.7 Summary ........................................ 259
9.5 Phase separation in nonideal solutions ................. 259
9.5.1 Introduction and solution models ............... 259
9.5.2 General conditions for phase separation.
Spinodals and binodals ......................... 261
9.5.3 Application to the regular solution model and
other solution models .......................... 263
9.5.4 Application to binary temperature-composition
phase diagrams ................................. 265
9.5.5 Application to ternary systems and to ternary
isothermal phase diagrams ...................... 266
Summary .................................................... 270
Study questions ............................................ 271
Problems ................................................... 272
10 Vapor-liquid equilibria with applications to distillation .. 274
10.1 Introduction .......................................... 274
10.2 Vapor-liquid equilibria for ideal liquid solutions,
ideal vapor solutions, and low pressures. Raoult's
law ................................................... 276
10.2.1 Derivation of the general equations for two
components ..................................... 276
10.2.2 Calculations of bubble-point and dew-point
curves for two components ...................... 279
10.2.3 Extension to three or more components .......... 285
10.3 Vapor-liquid equilibrium for nonideal solutions at
any pressure .......................................... 286
10.3.1 General equations for two components ........... 286
10.3.2 Calculations of bubble-point and dew-point
curves ......................................... 287
10.3.3 Azeotropy effects .............................. 290
10.3.4 Effects of liquid-liquid phase separation ...... 293
10.3.5 Extension to three or more components .......... 294
Summary .................................................... 295
Study questions ............................................ 295
Problems ................................................... 296
11 Gas-liquid equilibria and applications to gas absorption
or desorption .............................................. 298
11.1 Introduction .......................................... 298
11.2 Gas-liquid equilibria for ideal solutions. Henry's
law ................................................... 299
11.2.1 General equations for two-component systems .... 299
11.2.2 Calculations of bubble and dew points and of
solubilities ................................... 301
11.3 Gas-liquid equilibria for nonideal solutions .......... 303
11.3.1 Formulation with activities and fugacities ..... 303
11.3.2 Further discussion of the C02-H20 system.
Comparison of two methods for describing
liquid solutions ............................... 304
11.4 Extension to three or more components ................. 305
Summary .................................................... 305
Study questions ............................................ 306
Problems ................................................... 306
12 Applications to liquid-liquid equilibria and liquid-
liquid extraction .......................................... 307
12.1 Introduction .......................................... 307
12.2 Three components with one liquid solute ............... 309
12.3 Three components with one non-liquid solute ........... 310
12.4 Implications and applications to liquid-liquid
extraction ............................................ 311
12.5 Two or more solutes ................................... 312
Summary .................................................... 312
Study questions ............................................ 313
Problems ................................................... 313
13 Osmosis, osmotic pressure, osmotic equilibrium, and
reverse osmosis ............................................ 315
13.1 Introduction .......................................... 315
13.2 Origins and derivation of osmotic pressure for one
or more solutes ....................................... 315
13.3 Applications to determining salt dissociation in
electrolytes, molecular masses of polymer solutes,
and solution nonideality parameters ................... 319
13.3.1 Electrolytes ................................... 319
13.3.2 Polymers ....................................... 319
13.3.3 Determination of number-average molecular
mass by osmometry .............................. 320
13.3.4 Solution nonideality parameters ................ 321
13.4 Reverse osmosis applications. Water purification ...... 322
Summary .................................................... 323
Study questions ............................................ 324
Problems ................................................... 324
14 The Third Law and the molecular basis of the Second and
Third Laws ................................................. 325
14.1 Introduction .......................................... 325
14.2 The experimental and classical thermodynamic basis
of the Third Law and of the absolute entropy .......... 327
14.3 Various statements of the Third Law of
thermodynamics ........................................ 328
14.4 Some key concepts of classical and quantum
statistical mechanics and thermodynamics .............. 329
14.4.1 Microcanonical ensemble ........................ 331
14.4.2 Canonical ensemble ............................. 331
14.5 Connections of statistical mechanics and
thermodynamics with classical thermodynamics .......... 334
14.6 Molecular and statistical interpretation of
thermodynamic concepts and laws ....................... 336
Summary .................................................... 338
Study questions ............................................ 338
Problems ................................................... 339
15 Some special implications and applications of the First
and Second Laws ............................................ 341
15.1 Introduction .......................................... 341
15.2 The Gibbs-Duhem equations and conditions for
thermodynamic consistency of experimental data ........ 341
15.2.1 Introduction ................................... 341
15.2.2 The main form of the Gibbs-Duhem equation ...... 342
15.2.3 Other Gibbs-Duhem equations for partial molar
properties ..................................... 344
15.2.4 The Gibbs-Duhem equations for activity
coefficients of components in liquid
solutions ...................................... 345
15.2.5 The Gibbs-Duhem equations for biphasic
systems with a fluid interface and the Gibbs
adsorption isotherm ............................ 347
15.3 Vapor pressure of a solution with a non-volatile
solute. Applications to the determination of mole
fractions, molecular weights, activity coefficients,
and binary phase diagrams ............................. 349
15.4 Boiling point elevation for a solvent with a non-
volatile solute. Ebullioscopy ......................... 352
15.5 Freezing point (or melting point) depression.
Cryoscopy ............................................. 354
15.6 Predictions of the solubility of a solid in an ideal
liquid solution ....................................... 354
Summary .................................................... 356
Study questions ............................................ 356
Problems ................................................... 357
16 Chemical reaction equilibria. One reaction ................. 358
16.1 Introduction .......................................... 358
16.2 Reaction equilibrium vs. reaction kinetics ............ 360
16.3 Stoichiometry and atom balances ....................... 362
16.4 The equilibrium extent of a chemical reaction ......... 363
16.5 Enthalpy changes, AH°(T) of a chemical reaction.
Standard heats of reaction ............................ 364
16.6 The temperature dependence of AH°(7) .................. 366
16.7 Calculation of the "adiabatic reactor temperature"
or "adiabatic flame temperature" ...................... 368
16.8 Implications for the operation and design of
internal combustion engines ........................... 371
16.9 Thermodynamic prediction of the direction of
a chemical reaction and of the equilibrium extent
of a chemical reaction ................................ 372
16.10 The standard Gibbs free energy change for
a reaction and definition of the equilibrium
constant for gas-phase reactions ...................... 374
16.11 The temperature dependence of the reaction
equilibrium constant ................................. 377
16.12 Reaction equilibria for gas-phase reactions.
Examples for ideal or nonideal gas mixtures .......... 380
16.12.1 Introduction .................................. 380
16.12.2 Ideal gas-phase solutions. Effects of the
reaction pressure, the initial number of
moles, and the presence of inert gas
components .................................... 381
16.12.3 Reaction equilibria for nonideal gas
mixtures ...................................... 387
16.13 Reaction equilibria for liquid-phase and other
homogeneous reactions ................................ 388
16.14 Reaction equilibria of heterogeneous reactions ....... 392
Summary .................................................... 394
Study questions ............................................ 395
Problems ................................................... 396
17 Chemical reaction equilibria. Two or more reactions
occurring simultaneously ................................... 399
17.1 Introduction .......................................... 399
17.2 Determination of the number of independent reactions
from the rank of the atomic matrix .................... 400
17.3 Determining the equilibrium yields of two or more
reactions from the equilibrium constants .............. 402
17.4 Determination of the equilibrium yields of two or
more reactions from the minimization of the Gibbs
free energy under constraints ......................... 403
17.5 An example of one reaction vs. multiple reactions ..... 409
Summary .................................................... 415
Study questions ............................................ 415
Problems ................................................... 416
18 Applications of thermodynamics to energy engineering and
environmental engineering .................................. 417
18.1 Introduction .......................................... 417
18.2 Energy sources and types, and energy interconversion .. 417
18.3 Energy efficiency in buildings, transportation,
agriculture, industrial production, and fuel use ...... 418
18.4 Mass balances for methane and carbon dioxide in the
atmosphere and carbon footprints ...................... 419
18.5 Energy balances for the Earth's surface and
atmosphere. Key issues for models of global warming
and climate change .................................... 420
18.6 Energy costs of materials used in energy production
and industrial products ............................... 421
18.7 Thermodynamics in problems of air pollution and
water pollution ....................................... 422
Summary .................................................... 423
Study questions ............................................ 423
Problems ................................................... 424
Appendix A A guide to thermodynamic data and bibliography ..... 425
A.1 A guide to thermodynamic data ......................... 425
A.2 A guide to bibliography of thermodynamics and related
areas ................................................. 427
References ................................................. 428
Index ......................................................... 433
|