Preface ...................................................... xiii
Contributors ................................................. xvii
1 Spaser, Plasmonic Amplification, and Loss Compensation ..... 1
Mark I. Stockman
1.1 Introduction to Spasers and Spasing ........................ 1
1.2 Spaser Fundamentals ........................................ 2
1.2.1 Brief Overview of the Latest Progress in Spasers .... 5
1.3 Quantum Theory of Spaser ................................... 7
1.3.1 Surface Plasmon Eigenmodes and Their Quantization ... 7
1.3.2 Quantum Density Matrix Equations (Optical Bloch
Equations) for Spaser ............................... 9
1.3.3 Equations for CW Regime ............................ 11
1.3.4 Spaser operation in CW Mode ........................ 15
1.3.5 Spaser as Ultrafast Quantum Nanoamplifier .......... 17
1.3.6 Monostable Spaser as a Nanoamplifier in Transient
Regime ............................................. 18
1.4 Compensation of Loss by Gain and Spasing .................. 22
1.4.1 Introduction to Loss Compensation by Gain .......... 22
1.4.2 Permittivity of Nanoplasmonic Metamaterial ......... 22
1.4.3 Plasmonic Eigenmodes and Effective Resonant
Permittivity of Metamaterials ...................... 24
1.4.4 Conditions of Loss Compensation by Gain and
Spasing ............................................ 25
1.4.5 Discussion of Spasing and Loss Compensation by
Gain ............................................... 27
1.4.6 Discussion of Published Research on Spasing and
Loss Compensations ................................. 29
Acknowledgments ........................................... 33
References ................................................ 33
2 Nonlinear Effects in Plasmonic Systems .................... 41
Pavel Ginzburg and Meir Orenstein
2.1 Introduction .............................................. 41
2.2 Metallic Nonlinearities—Basic Effects and Models .......... 43
2.2.1 Local Nonlinearity—Transients by Carrier Heating ... 43
2.2.2 Plasma Nonlinearity—The Ponderomotive Force ........ 45
2.2.3 Parametric Process in Metals ....................... 46
2.2.4 Metal Damage and Ablation .......................... 48
2.3 Nonlinear Propagation of Surface Plasmon Polaritons ....... 49
2.3.1 Nonlinear SPP Modes ................................ 50
2.3.2 Plasmon Solitons ................................... 50
2.3.3 Nonlinear Plasmonic Waveguide Couplers ............. 54
2.4 Localized Surface Plasmon Nonlinearity .................... 55
2.4.1 Cavities and Nonlinear Interactions Enhancement .... 56
2.4.2 Enhancement of Nonlinear Vacuum Effects ............ 58
2.4.3 High Harmonic Generation ........................... 60
2.4.4 Localized Field Enhancement Limitations ............ 60
2.5 Summary ................................................... 62
Acknowledgments ........................................... 62
References ................................................ 62
3 Plasmonic Nanorod Metamaterials as a Platform for
Active Nanophotonics ...................................... 69
Gregory A. Wurtz, Wayne Dickson, Anatoly V. Zayats,
Antony Murphy, and Robert J. Pollard
3.1 Introduction .............................................. 69
3.2 Nanorod Metamaterial Geometry ............................. 71
3.3 Optical Properties ........................................ 72
3.3.1 Microscopic Description of the Metamaterial
Electromagnetic Modes .............................. 72
3.3.2 Effective Medium Theory of the Nanorod
Metamaterial ....................................... 76
3.3.3 Epsilon-Near-Zero Metamaterials and Spatial
Dispersion Effects ................................. 79
3.3.4 Guided Modes in the Anisotropic Metamaterial Slab .. 82
3.4 Nonlinear Effects in Nanorod Metamaterials ................ 82
3.4.1 Nanorod Metamaterial Hybridized with Nonlinear
Dielectric ......................................... 84
3.4.2 Intrinsic Metal Nonlinearity of Nanorod
Metamaterials ...................................... 85
3.5 Molecular Plasmonics in Metamaterials ..................... 89
3.6 Electro-Optical Effects in Plasmonic Nanorod
Metamaterial Hybridized with Liquid Crystals .............. 97
3.7 Conclusion ................................................ 98
References ................................................ 99
4 Transformation Optics for Plasmonics ..................... 105
Alexandre Aubry and John B. Pendry
4.1 Introduction ............................................. 105
4.2 The Conformal Transformation Approach .................... 108
4.2.1 A Set of Canonic Plasmonic Structures ............. 109
4.2.2 Perfect Singular Structures ....................... 110
4.2.3 Singular Plasmonic Structures ..................... 114
4.2.3.1 Conformal Mapping of Singular Structures ...... 114
4.2.3.2 Conformal Mapping of Blunt-Ended Singular
Structures .................................... 118
4.2.4 Resonant Plasmonic Structures ..................... 119
4.3 Broadband Light Harvesting and Nanofocusing .............. 121
4.3.1 Broadband Light Absorption ........................ 121
4.3.2 Balance between Energy Accumulation and
Dissipation ....................................... 123
4.3.3 Extension to 3D ................................... 125
4.3.4 Conclusion ........................................ 126
4.4 Surface Plasmons and Singularities ....................... 127
4.4.1 Control of the Bandwidth with the Vertex Angle .... 127
4.4.2 Effect of the Bluntness ........................... 129
4.5 Plasmonic Hybridization Revisited with Transformation
Optics ................................................... 130
4.5.1 A Resonant Behavior ............................... 131
4.5.2 Nanofocusing Properties ........................... 132
4.6 Beyond the Quasi-Static Approximation .................... 133
4.6.1 Conformal Transformation Picture .................. 134
4.6.2 Radiative Losses .................................. 135
4.6.3 Fluorescence Enhancement .......................... 137
4.6.3.1 Fluorescence Enhancement in the Near-Field
of Nanoantenna ................................ 138
4.6.3.2 The CT Approach ............................... 139
4.7 Nonlocal effects ......................................... 142
4.7.1 Conformal Mapping of Nonlocality .................. 142
4.7.2 Toward the Physics of Local Dimers ................ 143
4.8 Summary and Outlook ...................................... 145
Acknowledgments .......................................... 145
References ............................................... 145
5 Loss Compensation and Amplification of Surface
Plasmon Polaritons ....................................... 153
Pierre Berini
5.1 Introduction ............................................. 153
5.2 Surface Plasmon Waveguides ............................... 154
5.2.1 Unidimensional Structures ......................... 154
5.2.2 Bidimensional Structures .......................... 156
5.2.3 Confinement-Attenuation Trade-Off ................. 156
5.2.4 Optical Processes Involving SPPs .................. 157
5.3 Single Interface ......................................... 157
5.3.1 Theoretical ....................................... 157
5.3.2 Experimental ...................................... 158
5.4 Symmetric Metal Films .................................... 160
5.4.1 Gratings .......................................... 160
5.4.2 Theoretical ....................................... 160
5.4.3 Experimental ...................................... 161
5.5 Metal Clads .............................................. 163
5.5.1 Theoretical ....................................... 164
5.5.2 Experimental ...................................... 164
5.6 Other Structures ......................................... 164
5.6.1 Dielectric-Loaded SPP Waveguides .................. 164
5.6.2 Hybrid SPP Waveguide .............................. 165
5.6.3 Nanostructures .................................... 166
5.7 Conclusions .............................................. 166
References ............................................... 167
6 Controlling Light Propagation with Interfacial Phase
Discontinuities .......................................... 171
Nanfang Yu, Mikhail A. Kats, Patrice Genevet, Francesco
Aieta, Remain Blanchard, Guillaume Aoust, Zeno Gaburro,
and Federico Capasso
6.1 Phase Response of Optical Antennas ....................... 172
6.1.1 Introduction ...................................... 172
6.1.2 Single Oscillator Model for Linear Optical
Antennas .......................................... 174
6.1.3 Two-Oscillator Model for 2D Structures
Supporting Two Orthogonal Plasmonic Modes ......... 176
6.1.4 Analytical Models for V-Shaped Optical Antennas ... 179
6.1.5 Optical Properties of V-Shaped Antennas:
Experiments and Simulations ....................... 183
6.2 Applications of Phased Optical Antenna Arrays ............ 186
6.2.1 Generalized Laws of Reflection and Refraction:
Meta-Interfaces with Phase Discontinuities ........ 186
6.2.2 Out-of-Plane Reflection and Refraction of Light
by Meta-Interfaces ................................ 192
6.2.3 Giant and Tuneable Optical Birefringence .......... 197
6.2.4 Vortex Beams Created by Meta-Interfaces ........... 200
References ............................................... 213
7 Integrated Plasmonic Detectors ........................... 219
Pieter Neutens and Paul Van Dorpe
7.1 Introduction ............................................. 219
7.2 Electrical Detection of Surface Plasmons ................. 221
7.2.1 Plasmon Detection with Tunnel Junctions ........... 221
7.2.2 Plasmon-Enhanced Solar Cells ...................... 222
7.2.3 Plasmon-Enhanced Photodetectors ................... 225
7.2.4 Waveguide-Integrated Surface Plasmon Polariton
Detectors ......................................... 232
7.3 Outlook .................................................. 236
References ............................................... 237
8 Terahertz Plasmonic Surfaces for Sensing ................. 243
Stephen M. Hanham and Stefan A. Maier
8.1 The Terahertz Region for Sensing ......................... 244
8.2 THz Plasmonics ........................................... 244
8.3 SPPs on Semiconductor Surfaces ........................... 245
8.3.1 Active Control of Semiconductor Plasmonics ........ 247
8.4 SSPP on Structured Metal Surfaces ........................ 247
8.5 THz Plasmonic Antennas ................................... 249
8.6 Extraordinary Transmission ............................... 253
8.7 THz Plasmons on Graphene ................................. 255
References ............................................... 256
9 Subwavelength Imaging by Extremely Anisotropic Media ..... 261
Pavel A. Belov
9.1 Introduction to Canalization Regime of Subwavelength
Imaging .................................................. 261
9.2 Wire Medium Lens at the Microwave Frequencies ............ 264
9.3 Magnifying and Demagnifying Lenses with Super-
Resolution ............................................... 269
9.4 Imaging at the Terahertz and Infrared Frequencies ........ 272
9.5 Nanolenses Formed by Nanorod Arrays for the Visible
Frequency Range .......................................... 276
9.6 Superlenses and Hyperlenses Formed by Multilayered
Metal-Dielectric Nanostructures .......................... 279
References ............................................... 284
10 Active and Tuneable Metallic Nanoslit Lenses ............. 289
Satoshi Ishii, Xingjie Ni, Vladimir P. Drachev, Mark
D. Thoreson, Vladimir M. Shalaev, and Alexander
V. Kildishev
10.1 Introduction ............................................. 289
10.2 Polarization-Selective Gold Nanoslit Lenses .............. 290
10.2.1 Design Concept of Gold Nanoslit Lenses ............ 291
10.2.2 Experimental Demonstration of Gold Nanoslit
Lenses ............................................ 292
10.3 Metallic Nanoslit Lenses with Focal-Intensity
Tuneability and Focal Length Shifting .................... 295
10.3.1 Liquid Crystal-Controlled Nanoslit Lenses ......... 295
10.3.2 Nonlinear Materials for Controlling Nanoslit
Lenses ............................................ 300
10.4 Lamellar Structures with Hyperbolic Dispersion Enable
Subwavelength Focusing with Metallic Nanoslits ........... 301
10.4.1 Active Lamellar Structures with Hyperbolic
Dispersion ........................................ 302
10.4.2 Subwavelength Focusing with Active Lamellar
Structures ........................................ 307
10.4.3 Experimental Demonstration of Subwavelength
Diffraction ....................................... 308
10.5 Summary .................................................. 313
Acknowledgments ............................................... 313
References .................................................... 313
|