Natural and artificial photosynthesis: solar power as an energy source (Hoboken, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNatural and artificial photosynthesis: solar power as an energy source / ed. by R.Razeghifard. - Hoboken: Wiley, 2013. - xxv, 462 p.: ill., tab. - Bibliogr. at the end of the chapters. - Ind.: p.457-462. - ISBN 978-1-118-16006-0
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xv
Contributors .................................................. xix
Acronyms .................................................... xxiii

1  Physics Overview of Solar Energy ............................. 1
   Diego Castano
   1.1  Introduction ............................................ 1
   1.2  The Sun ................................................. 2
   1.3  Light ................................................... 3
   1.4  Thermodynamics .......................................... 6
   1.5  Photovoltaics ........................................... 9
   1.6  Photosynthesis ......................................... 11
   References .................................................. 12

2  Oxygenic Photosynthesis ..................................... 13
   Dmitriy Shevela, Lars Olof Björn, and Govindjee
   2.1  Introduction ........................................... 13
        2.1.1  Importance of Photosynthesis: Why Study
               Photosynthesis? ................................. 13
        2.1.2  Oxygenic Versus Anoxygenic Photosynthesis ....... 14
        2.1.3  What Can We Learn from Natural Photosynthesis
               to Achieve Artificial Photosynthesis? ........... 14
        2.1.4  Atomic Level Structures of Photosynthetic
               Systems ......................................... 15
        2.1.5  Scope of the Chapter ............................ 16
   2.2  Path of Energy: From Photons to Charge Separation ...... 16
        2.2.1  Overview: Harvesting Sunlight for Redox
               Chemistry ....................................... 16
        2.2.2  Light absorption and Light-Harvesting Antennas .. 16
        2.2.3  Excitation Energy Transfer: Coherent Versus
               Incoherent or Wavelike Versus Hopping ........... 20
        2.2.4  Concluding Remarks and Future Perspectives for
               Artificial Photosynthesis ....................... 22
   2.3  Electron Transfer Pathways ............................. 22
        2.3.1  Overview of the Primary Photochemistry and the
               Electron Transfer Chain ......................... 22
        2.3.2  Components Associated with P680 and P700 and
               the Entry into the Electron Transfer Chain ...... 24
        2.3.3  Photosystem II: Function and Electron Transfer
               Pathway ......................................... 26
        2.3.4  Photosystem I: Function and the Electron
               Transfer Pathways ............................... 28
        2.3.5  Intersystem Electron Transfer ................... 29
        2.3.6  Water as a Source of Electrons for the
               Photosynthetic Electron Transfer Chain .......... 30
        2.3.7  Can the Rate Limitation of O2 Production by
               Photosystem II Be Improved in Future
               Artificial Water-Splitting Systems? ............. 30
   2.4  Photophosphorylation ................................... 30
        2.4.1  Overview ........................................ 30
        2.4.2  Mechanism of ATP Synthesis ...................... 31
        2.4.3  Concluding Remarks .............................. 33
   2.5  Carbon Dioxide to Organic Compounds .................... 33
        2.5.1  Overview of Carbon Dioxide Assimilation
               Systems in Oxygenic Organisms ................... 33
        2.5.2  C3 Pathway Versus C4 Pathway .................... 33
        2.5.3  C3 versus C4 Plants During Glacial/
               Interglacial Periods ............................ 35
        2.5.4  Concluding Remarks: Can the Natural
               Assimilation Pathways Be Improved to Help
               Solve the Energy Crisis? ........................ 36
   2.6  Evolution of Oxygenic Photosynthesis ................... 37
        2.6.1  Overview ........................................ 37
        2.6.2  Two Photosystems for Oxygenic Photosynthesis .... 38
        2.6.3  Evolutionary Acclimation to Decreasing CO2
               Availability .................................... 40
   2.7  Some Interesting Questions about Whole Plants .......... 42
        2.7.1  Overview ........................................ 42
        2.7.2  Why Are There Grana in Land Plants but Not in
               Algae? .......................................... 43
        2.7.3  Why Are Leaves Darker on the Upper Side than
               on the Lower Side? .............................. 44
        2.7.4  How Much Do Different Layers in the Leaf
               Contribute to Photosynthesis? ................... 45
        2.7.5  How Does Photosynthesis Interact with Climate-
               Atmosphere? ..................................... 46
        2.7.6  Is There Photosynthesis Without CO2
               Assimilation (N2 Fixation in Cyanobacteria,
               Light-Dependent N3-Assimilation in Land
               Plants)? ........................................ 47
        2.7.7  How Can Animals Carry Out Photosynthesis? ....... 47
   2.8  Perspectives for the Future ............................ 48
   2.9  Summary ................................................ 48
   Acknowledgments ............................................. 49
   References .................................................. 49

3  Apparatus and Mechanism of Photosynthetic Water Splitting
   as Nature's Blueprint for Efficient Solar Energy
   Exploitation ............................................ 65
   Gernot Renger
   3.1  Introduction ........................................... 65
   3.2  Overall Reaction Pattern of Photosynthesis and
        Respiration ............................................ 67
   3.3  Bioenergetic Limit of Solar Energy Exploitation: Water
        Splitting .............................................. 68
   3.4  Humankind's Dream of Using Water and Solar Radiation
        as "Clean Fuel" ........................................ 69
   3.5  Nature's Blueprint of Light-Induced Water Splitting .... 71
   3.6  Types of Approaches in Performing Light-Driven H2 and
        O2 Formation from Water ................................ 71
        3.6.1  Use of Photosynthetic Organisms ................. 72
        3.6.2  Hybrid Systems .................................. 72
        3.6.3  Synthetic Systems ............................... 74
        3.6.4  Oxidative Water Splitting into O2 and 4H+ ....... 75
        3.6.5  Synthetic WOCs .................................. 76
        3.6.6  Light-Induced Water Splitting in Photosystem
               II .............................................. 77
   3.7  Light-Induced "Stable" Charge Separation ............... 78
   3.8  Energetics of Light-Induced Charge Separation .......... 80
   3.9  Oxidative Water Splitting: The Kok Cycle ............... 82
   3.10 Yz Oxidation by P680+* ................................. 83
   3.11 Structure and Function of the WOC ...................... 86
        3.11.1 Structure of the Catalytic Mn-Ca Cluster and
               its Coordination Sphere ......................... 87
        3.11.2 Electronic Configuration and Nuclear Geometry
               in the Si- States of the Catalytic Site ......... 90
        3.11.3 Kinetics of Oxidative Water Splitting in the
               WOC ............................................. 92
        3.11.4 Substrate/Product Pathways ...................... 93
        3.11.5 Mechanism of Oxidative Water Splitting .......... 95
   3.12 Concluding Remarks .................................... 102
   Acknowledgments ............................................ 102
   References ................................................. 103

4  Artificial Photosynthesis .................................. 121
   Reza Razeghifard
   4.1  Introduction .......................................... 121
   4.2  Organic Pigment Assemblies on Electrodes .............. 122
   4.3  Photosystem Assemblies on Electrodes .................. 124
   4.4  Hydrogen Production by Photosystem I Hybrid Systems ... 127
   4.5  Mimicking Water Oxidation with Manganese Complexes .... 128
   4.6  Protein Design for Introducing Manganese Chemistry in
        Proteins .............................................. 130
   4.7  Protein Design and Photoactive Proteins with Chi
        Derivatives ........................................... 131
   4.8  Conclusion ............................................ 133
   Acknowledgment ............................................. 133
   References ................................................. 134

5  Artificial Photosynthesis: Ruthenium Complexes ............. 143
   Dimitrios G. Giarikos
   5.1  Ruthenium(II) ......................................... 143
   5.2  Ligand Influence on the Photochemistry of Ru(II) ...... 145
   5.3  Importance of Polypyridyl Ligands and Metal Ion for
        Tuning of MLCT Transitions ............................ 149
   5.4  Electron Transfer of Ru(II) Complexes ................. 150
   5.5  Light-Harvesting Complexes Using Ru(II) Complexes ..... 151
   5.6  Ru(II) Artificial Photosystem Models for
        Photosystem II ........................................ 157
   5.7  Ru (II) Artificial Photosystem Models for
        Hydrogenase ........................................... 161
   5.8  Conclusion ............................................ 166
   References ................................................. 166

6  CO2 Sequestration and Hydrogen Production Using Cyanobacteria
   and Green Algae ............................................ 173
   Kanhaiya Kumar and Debabrata Das
   6.1  Introduction .......................................... 173
   6.2  Microbiology .......................................... 174
   6.3  Biochemistry of CO2 Fixation .......................... 176
        6.3.1  CO2 Assimilation and Concentrating Mechanisms
               in Algae ....................................... 176
        6.3.2  Carbon-Concentrating Mechanisms (CCMs) ......... 178
   6.4  Parameters Affecting the CO2 Sequestration Process .... 180
        6.4.1  Selection of Algal Species ..................... 180
        6.4.2  Effect of Flue Gas Component ................... 181
        6.4.3  Effect of Physiochemical Parameters ............ 182
        6.4.4  Issues of Product Inhibition ................... 182
   6.5  Hydrogen Production by Cyanobacteria .................. 183
        6.5.1  Mechanism of Hydrogen Production ............... 183
        6.5.2  Mode of Hydrogen Production .................... 191
        6.5.3  Hydrogenase Versus Nitrogenase-Based Hydrogen
               Production ..................................... 192
        6.5.4  Factors Affecting Hydrogen Production in
               Cyanobacteria .................................. 192
        6.5.5  Recent Advances in the Field of Hydrogen
               Production Using Cyanobacteria ................. 193
   6.6  Mechanisms of H2 Production in Green Algae ............ 194
        6.6.1  Light Fermentation ............................. 197
        6.6.2  Dark Fermentation .............................. 198
        6.6.3  Use of Chemicals ............................... 198
        6.6.4  Sulfur Deprivation ............................. 198
        6.6.5  Control of Sulfur Quantity ..................... 200
        6.6.6  Immobilization ................................. 200
        6.6.7  Molecular Approach ............................. 200
        6.6.8  Recent Trends in the Field of Hydrogen
               Production by Green Algae ...................... 201
   6.7  Photobioreactors ...................................... 202
        6.7.1  Vertical Tubular Photobioreactor ............... 202
        6.7.2  Horizontal Tubular Photobioreactor ............. 204
        6.7.3  Helical Tubular Photobioreactor ................ 204
        6.7.4  Flat Panel Photobioreactor ..................... 205
        6.7.5  Stirred Tank Photobioreactor ................... 205
        6.7.6  Hybrid Photobioreactor ......................... 205
   6.8  Conclusion ............................................ 206
   Acknowledgments ............................................ 206
   References ................................................. 206
7  Cyanobacteria! Biofuel and Chemical Production for CO2
   Sequestration .............................................. 217
   John W.K. Oliver and Shota Atsumi
   7.1  Carbon Sequestration by Biomass ....................... 217
   7.2  Introduction to Cyanobacteria ......................... 219
   7.3  C02 Uptake Efficiency of Cyanobacteria ................ 219
   7.4  Mitigation of Costs Through Captured-Carbon Products .. 221
   7.5  Captured-Carbon Products from Engineered
        Cyanobacteria ......................................... 222
        7.5.1  Isobutyraldehyde ............................... 222
        7.5.2  Isobutanol ..................................... 222
        7.5.3  Fatty Acids .................................... 223
        7.5.4  Hydrocarbons ................................... 223
        7.5.5  1-Butanol ...................................... 224
        7.5.6  Isoprene ....................................... 224
        7.5.7  Hydrogen ....................................... 225
        7.5.8  Poly-3-hydroxybutyrate ......................... 225
        7.5.9  Indirect Production Technology ................. 225
   7.6  Conclusion ............................................ 227
   References ................................................. 227
8  Hydrogen Production by Microalgae .......................... 231
   Helena M. Amaro, M. Glória Esquivel, Teresa S. Pinto,
   and F. Xavier Malcata
   8.1  Introduction .......................................... 231
   8.2  Hydrogenase Engineering ............................... 233
   8.3  Metabolic Reprograming ................................ 233
   8.4  Light Capture Improvement ............................. 236
   Acknowledgments ............................................ 238
   References ................................................. 238
9  Algal Biofuels ............................................. 243
   Archana Tiwari andAnjana Pandey
   9.1  Introduction .......................................... 243
   9.2  Advantages of Algae ................................... 243
   9.3  Algal Strains and Biofuel Production .................. 246
   9.4  Algal Biofuels ........................................ 247
        9.4.1  Complete Cell Biomass .......................... 247
        9.4.2  Lipids ......................................... 247
        9.4.3  Biodiesel ...................................... 248
        9.4.4  "Advantages of Biodiesel from Algae Oil ........ 249
        9.4.5  Hydrocarbons ................................... 250
        9.4.6  Hydrogen ....................................... 250
        9.4.7  Ethanol ........................................ 251
        9.4.8  Unique Products ................................ 251
   9.5  Algal Cultivation for Biofuel Production .............. 252
        9.5.1  Carbon Dioxide Capture ......................... 252
        9.5.2  Light .......................................... 252
        9.5.3  Nutrient Removal ............................... 253
        9.5.4  Temperature .................................... 253
        9.5.5  Biomass Harvesting ............................. 253
   9.6  Photobioreactors Employed for Algal Biofuels .......... 254
        9.6.1  Tubular Photobioreactors ....................... 254
        9.6.2  Flat Panel Photobioreactors .................... 255
        9.6.3  Offshore Membrane Enclosure for Growing Algae
               (OMEGA) ........................................ 255
   9.7  Recent Achievements in Algal Biofuels ................. 255
   9.8  Strategies for Enhancement of Algal Biofuel
        Production ............................................ 258
        9.8.1  Biorefinery: The High-Value Coproduct
               Strategy ....................................... 258
        9.8.2  Exploration of Growth Conditions and
               Nutrients ...................................... 259
        9.8.3  Design of Advanced Photobioreactors ............ 259
        9.8.4  Biotechnological Tools ......................... 260
        9.8.5  Cost-Effective Technologies for Biomass
               Harvesting and Drying .......................... 260
   9.9  Conclusion ............................................ 261
   References ................................................. 261
10 Green Hydrogen: Algal Biohydrogen Production ............... 267
   Ela Eroglu, Matthew Timmins, and Steven M. Smith
   10.1 Introduction .......................................... 267
   10.2 Hydrogen Production by Algae .......................... 267
   10.3 Hydrogenase Enzyme .................................... 269
   10.4 Diversity of Hydrogen-Producing Algae ................. 270
   10.5 Model Microalgae for H2 Production Studies:
        Chlamydomonas Reinhardtii ............................. 272
   10.6 Approaches for Enhancing Hydrogen Production .......... 273
        10.6.1 Immobilization Processes ....................... 273
        10.6.2 Increasing the Resistance of Algal Cells to
               Stress Conditions .............................. 274
        10.6.3 Optimization of Bioreactor Conditions .......... 275
        10.6.4 Integrated Photosynthetic Systems .............. 276
        10.6.5 Genetic Engineering Approaches to Improve
               Photosynthetic Efficiency ...................... 278
        10.6.6 Metabolic Pathways of H2 Production ............ 278
   10.7 Conclusion ............................................ 279
   References ................................................. 279
11 Growth in Photobioreactors ................................. 285
   Niels Thomas Eriksen
   11.1 Introduction .......................................... 285
   11.2 Design of Photobioreactors ............................ 286
   11.3 Limitations to Productivity of Microalgal Cultures .... 287
   11.4 Actual Productivities of Microalgal Cultures .......... 290
   11.5 Distribution of Light in Photobioreactors ............. 292
   11.6 Gas Exchange in Photobioreactors ...................... 294
   11.7 Shear Stress in Photobioreactors ...................... 297
   11.8 Current Trends in Photobioreactor Development ......... 298
   Acknowledgment ............................................. 299
   References ................................................. 299
12 Industrial Cultivation Systems for Intensive
   Production of Microalgae ................................... 307
   Giuseppe Olivieri, Piero Salatino, and Antonio Marzocchella
   12.1 Introduction .......................................... 307
   12.2 Relevant Issues for Design and Operation of Systems for
        Microalgal Cultures ................................... 308
        12.2.1 Stoichiometry of Microalgal Growth ............. 308
        12.2.2 Microalgal Kinetics ............................ 308
        12.2.3 Mass Balance ................................... 312
        12.2.4 Energy Balance ................................. 312
        12.2.5 Basic System Design of Microalgal Cultivation .. 313
        12.2.6 Gas-Liquid Mass Transport ...................... 317
        12.2.7 Mixing ......................................... 317
   12.3 Open Systems .......................................... 318
        12.3.1 Typologies ..................................... 318
        12.3.2 Mass Balances .................................. 319
        12.3.3 Energy Balance ................................. 320
        12.3.4 Gas-Liquid Mass Transfer ....................... 320
   12.4 Closed Systems: Photobioreactors ...................... 321
        12.4.1 Photobioreactor Typologies ..................... 321
        12.4.2 Mass Balances .................................. 321
        12.4.3 Energy Balance ................................. 323
        12.4.4 Cultivation System Design ...................... 323
        12.4.5 Gas-Liquid Mass Transfer ....................... 325
   12.5 Novel Photobioreactor Configurations .................. 326
   12.6 Case Study: Intensive Production of Bio-Oil ........... 333
        12.6.1 Assessment of Maximum Productivity ............. 333
        12.6.2 Economic Assessment ............................ 334
   Acknowledgments ............................................ 337
   References ................................................. 337
13 Microalgae Biodiesel and Macroalgae Bioethanol: The Solar
   Conversion Challenge for Industrial Renewable Fuels ........ 345
   Navid R. Moheimani, Mark P. McHenry, and Pouria Mehrani
   13.1 Introduction .......................................... 345
   13.2 Biofuel Supply, Demand, Production, and New Feedstocks  346
   13.3 Feasibility of Photosynthetic Fuel Production ......... 348
   13.4 Biodiesel Production and Feedstocks ................... 349
   13.5 Macroalgae Biofuel Feedstocks and Production .......... 352
   13.6 Conclusion ............................................ 354
   References ................................................. 355
14 Technoeconomic Assessment of Large-Scale Production of
   Bioethanol from Microalgal Biomass ......................... 361
   Razif Harun, Hassan J., Li J.S. Shu, Lucy A. Arthur, and
   Michael K. Danquah
   14.1 Introduction .......................................... 361
   14.2 Technology Selection and Process Design ............... 362
        14.2.1 Design Basis ................................... 362
        14.2.2 Strain Selection ............................... 362
        14.2.3 Technology Selection ........................... 362
        14.2.4 Process Design ................................. 364
   14.3 Economic Analysis ..................................... 375
        14.3.1 Capital Cost Estimates ......................... 376
        14.3.2 Major Equipment Cost (MEC) ..................... 376
        14.3.3 Fixed Capital Investments and Working Capital .. 376
        14.3.4 Operating Cost Estimates ....................... 377
        14.3.5 Cost of Ethanol Production ..................... 378
        14.3.6 Overall Production Cost ........................ 381
        14.3.7 Profitability .................................. 381
   14.4 Reduction of Overall Production Cost .................. 383
   14.5 Conclusion ............................................ 384
   References ................................................. 385
15 Microalgae-Derived Chemicals: Opportunity for an
   Integrated Chemical Plant .................................. 387
   Azadeh Kermanshahi-pour, Julie B. Zimmerman, and Paul
   T. Anastas
   15.1 Introduction .......................................... 387
   15.2 Microalgae Cultivation Systems ........................ 388
        15.2.1 Outdoor Open Systems ........................... 389
        15.2.2 Outdoor Enclosed Systems ....................... 389
        15.2.3 Fermenter-Type Reactors ........................ 392
   15.3 Lipids ................................................ 392
        15.3.1 Polyunsaturated Fatty Acids .................... 392
        15.3.2 Carotenoids .................................... 402
   15.4 Carbohydrates ......................................... 408
        15.4.1 Polysaccharides ................................ 410
   15.5 Protein ............................................... 410
        15.5.1 Phycobiliproteins .............................. 412
   15.6 Process Integration ................................... 413
   15.7 Conclusion ............................................ 420
   References ................................................. 422
16 Fuels and Chemicals from Lignocellulosic Biomass ........... 435
   Ian M. O'Hara, Zhanying Zhang, Philip A. Hobson, Mark D.
   Harrison, Sagadevan G. Mundree, and William O. S. Doherty
   16.1 Introduction .......................................... 435
   16.2 The Nature of Lignocellulosic Biomass ................. 436
        16.2.1 Cellulose ...................................... 436
        16.2.2 Hemicellulose .................................. 438
        16.2.3 Lignin ......................................... 438
   16.3 Feedstocks for Biomass Processing ..................... 439
        16.3.1 Agricultural Residues .......................... 440
        16.3.2 Forest Residues ................................ 441
   16.4 Production of Fermentable Sugars from Biomass ......... 441
        16.4.1 Pretreatment of Biomass ........................ 442
        16.4.2 Enzymatic Hydrolysis of Cellulose .............. 443
        16.4.3 Enzymatic Hydrolysis of Hemicellulose .......... 444
        16.4.4 Enzymatic Hydrolysis of Pretreated Biomass by
               Industrial Cellulase Mixtures .................. 444
   16.5 Thermochemical Conversion of Biomass to Fuels and
        Chemicals ............................................. 445
        16.5.1 Gasification ................................... 445
        16.5.2 Pyrolysis ...................................... 446
        16.5.3 Liquefaction ................................... 447
   16.6 Fuels and Chemicals from Biomass ...................... 449
   16.7 Conclusion ............................................ 449
   References ................................................. 450

Index ......................................................... 457


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:12 2019. Размер: 30,061 bytes.
Посещение N 1567 c 22.12.2015