Preface ........................................................ xv
Contributors .................................................. xix
Acronyms .................................................... xxiii
1 Physics Overview of Solar Energy ............................. 1
Diego Castano
1.1 Introduction ............................................ 1
1.2 The Sun ................................................. 2
1.3 Light ................................................... 3
1.4 Thermodynamics .......................................... 6
1.5 Photovoltaics ........................................... 9
1.6 Photosynthesis ......................................... 11
References .................................................. 12
2 Oxygenic Photosynthesis ..................................... 13
Dmitriy Shevela, Lars Olof Björn, and Govindjee
2.1 Introduction ........................................... 13
2.1.1 Importance of Photosynthesis: Why Study
Photosynthesis? ................................. 13
2.1.2 Oxygenic Versus Anoxygenic Photosynthesis ....... 14
2.1.3 What Can We Learn from Natural Photosynthesis
to Achieve Artificial Photosynthesis? ........... 14
2.1.4 Atomic Level Structures of Photosynthetic
Systems ......................................... 15
2.1.5 Scope of the Chapter ............................ 16
2.2 Path of Energy: From Photons to Charge Separation ...... 16
2.2.1 Overview: Harvesting Sunlight for Redox
Chemistry ....................................... 16
2.2.2 Light absorption and Light-Harvesting Antennas .. 16
2.2.3 Excitation Energy Transfer: Coherent Versus
Incoherent or Wavelike Versus Hopping ........... 20
2.2.4 Concluding Remarks and Future Perspectives for
Artificial Photosynthesis ....................... 22
2.3 Electron Transfer Pathways ............................. 22
2.3.1 Overview of the Primary Photochemistry and the
Electron Transfer Chain ......................... 22
2.3.2 Components Associated with P680 and P700 and
the Entry into the Electron Transfer Chain ...... 24
2.3.3 Photosystem II: Function and Electron Transfer
Pathway ......................................... 26
2.3.4 Photosystem I: Function and the Electron
Transfer Pathways ............................... 28
2.3.5 Intersystem Electron Transfer ................... 29
2.3.6 Water as a Source of Electrons for the
Photosynthetic Electron Transfer Chain .......... 30
2.3.7 Can the Rate Limitation of O2 Production by
Photosystem II Be Improved in Future
Artificial Water-Splitting Systems? ............. 30
2.4 Photophosphorylation ................................... 30
2.4.1 Overview ........................................ 30
2.4.2 Mechanism of ATP Synthesis ...................... 31
2.4.3 Concluding Remarks .............................. 33
2.5 Carbon Dioxide to Organic Compounds .................... 33
2.5.1 Overview of Carbon Dioxide Assimilation
Systems in Oxygenic Organisms ................... 33
2.5.2 C3 Pathway Versus C4 Pathway .................... 33
2.5.3 C3 versus C4 Plants During Glacial/
Interglacial Periods ............................ 35
2.5.4 Concluding Remarks: Can the Natural
Assimilation Pathways Be Improved to Help
Solve the Energy Crisis? ........................ 36
2.6 Evolution of Oxygenic Photosynthesis ................... 37
2.6.1 Overview ........................................ 37
2.6.2 Two Photosystems for Oxygenic Photosynthesis .... 38
2.6.3 Evolutionary Acclimation to Decreasing CO2
Availability .................................... 40
2.7 Some Interesting Questions about Whole Plants .......... 42
2.7.1 Overview ........................................ 42
2.7.2 Why Are There Grana in Land Plants but Not in
Algae? .......................................... 43
2.7.3 Why Are Leaves Darker on the Upper Side than
on the Lower Side? .............................. 44
2.7.4 How Much Do Different Layers in the Leaf
Contribute to Photosynthesis? ................... 45
2.7.5 How Does Photosynthesis Interact with Climate-
Atmosphere? ..................................... 46
2.7.6 Is There Photosynthesis Without CO2
Assimilation (N2 Fixation in Cyanobacteria,
Light-Dependent N3-Assimilation in Land
Plants)? ........................................ 47
2.7.7 How Can Animals Carry Out Photosynthesis? ....... 47
2.8 Perspectives for the Future ............................ 48
2.9 Summary ................................................ 48
Acknowledgments ............................................. 49
References .................................................. 49
3 Apparatus and Mechanism of Photosynthetic Water Splitting
as Nature's Blueprint for Efficient Solar Energy
Exploitation ............................................ 65
Gernot Renger
3.1 Introduction ........................................... 65
3.2 Overall Reaction Pattern of Photosynthesis and
Respiration ............................................ 67
3.3 Bioenergetic Limit of Solar Energy Exploitation: Water
Splitting .............................................. 68
3.4 Humankind's Dream of Using Water and Solar Radiation
as "Clean Fuel" ........................................ 69
3.5 Nature's Blueprint of Light-Induced Water Splitting .... 71
3.6 Types of Approaches in Performing Light-Driven H2 and
O2 Formation from Water ................................ 71
3.6.1 Use of Photosynthetic Organisms ................. 72
3.6.2 Hybrid Systems .................................. 72
3.6.3 Synthetic Systems ............................... 74
3.6.4 Oxidative Water Splitting into O2 and 4H+ ....... 75
3.6.5 Synthetic WOCs .................................. 76
3.6.6 Light-Induced Water Splitting in Photosystem
II .............................................. 77
3.7 Light-Induced "Stable" Charge Separation ............... 78
3.8 Energetics of Light-Induced Charge Separation .......... 80
3.9 Oxidative Water Splitting: The Kok Cycle ............... 82
3.10 Yz Oxidation by P680+* ................................. 83
3.11 Structure and Function of the WOC ...................... 86
3.11.1 Structure of the Catalytic Mn-Ca Cluster and
its Coordination Sphere ......................... 87
3.11.2 Electronic Configuration and Nuclear Geometry
in the Si- States of the Catalytic Site ......... 90
3.11.3 Kinetics of Oxidative Water Splitting in the
WOC ............................................. 92
3.11.4 Substrate/Product Pathways ...................... 93
3.11.5 Mechanism of Oxidative Water Splitting .......... 95
3.12 Concluding Remarks .................................... 102
Acknowledgments ............................................ 102
References ................................................. 103
4 Artificial Photosynthesis .................................. 121
Reza Razeghifard
4.1 Introduction .......................................... 121
4.2 Organic Pigment Assemblies on Electrodes .............. 122
4.3 Photosystem Assemblies on Electrodes .................. 124
4.4 Hydrogen Production by Photosystem I Hybrid Systems ... 127
4.5 Mimicking Water Oxidation with Manganese Complexes .... 128
4.6 Protein Design for Introducing Manganese Chemistry in
Proteins .............................................. 130
4.7 Protein Design and Photoactive Proteins with Chi
Derivatives ........................................... 131
4.8 Conclusion ............................................ 133
Acknowledgment ............................................. 133
References ................................................. 134
5 Artificial Photosynthesis: Ruthenium Complexes ............. 143
Dimitrios G. Giarikos
5.1 Ruthenium(II) ......................................... 143
5.2 Ligand Influence on the Photochemistry of Ru(II) ...... 145
5.3 Importance of Polypyridyl Ligands and Metal Ion for
Tuning of MLCT Transitions ............................ 149
5.4 Electron Transfer of Ru(II) Complexes ................. 150
5.5 Light-Harvesting Complexes Using Ru(II) Complexes ..... 151
5.6 Ru(II) Artificial Photosystem Models for
Photosystem II ........................................ 157
5.7 Ru (II) Artificial Photosystem Models for
Hydrogenase ........................................... 161
5.8 Conclusion ............................................ 166
References ................................................. 166
6 CO2 Sequestration and Hydrogen Production Using Cyanobacteria
and Green Algae ............................................ 173
Kanhaiya Kumar and Debabrata Das
6.1 Introduction .......................................... 173
6.2 Microbiology .......................................... 174
6.3 Biochemistry of CO2 Fixation .......................... 176
6.3.1 CO2 Assimilation and Concentrating Mechanisms
in Algae ....................................... 176
6.3.2 Carbon-Concentrating Mechanisms (CCMs) ......... 178
6.4 Parameters Affecting the CO2 Sequestration Process .... 180
6.4.1 Selection of Algal Species ..................... 180
6.4.2 Effect of Flue Gas Component ................... 181
6.4.3 Effect of Physiochemical Parameters ............ 182
6.4.4 Issues of Product Inhibition ................... 182
6.5 Hydrogen Production by Cyanobacteria .................. 183
6.5.1 Mechanism of Hydrogen Production ............... 183
6.5.2 Mode of Hydrogen Production .................... 191
6.5.3 Hydrogenase Versus Nitrogenase-Based Hydrogen
Production ..................................... 192
6.5.4 Factors Affecting Hydrogen Production in
Cyanobacteria .................................. 192
6.5.5 Recent Advances in the Field of Hydrogen
Production Using Cyanobacteria ................. 193
6.6 Mechanisms of H2 Production in Green Algae ............ 194
6.6.1 Light Fermentation ............................. 197
6.6.2 Dark Fermentation .............................. 198
6.6.3 Use of Chemicals ............................... 198
6.6.4 Sulfur Deprivation ............................. 198
6.6.5 Control of Sulfur Quantity ..................... 200
6.6.6 Immobilization ................................. 200
6.6.7 Molecular Approach ............................. 200
6.6.8 Recent Trends in the Field of Hydrogen
Production by Green Algae ...................... 201
6.7 Photobioreactors ...................................... 202
6.7.1 Vertical Tubular Photobioreactor ............... 202
6.7.2 Horizontal Tubular Photobioreactor ............. 204
6.7.3 Helical Tubular Photobioreactor ................ 204
6.7.4 Flat Panel Photobioreactor ..................... 205
6.7.5 Stirred Tank Photobioreactor ................... 205
6.7.6 Hybrid Photobioreactor ......................... 205
6.8 Conclusion ............................................ 206
Acknowledgments ............................................ 206
References ................................................. 206
7 Cyanobacteria! Biofuel and Chemical Production for CO2
Sequestration .............................................. 217
John W.K. Oliver and Shota Atsumi
7.1 Carbon Sequestration by Biomass ....................... 217
7.2 Introduction to Cyanobacteria ......................... 219
7.3 C02 Uptake Efficiency of Cyanobacteria ................ 219
7.4 Mitigation of Costs Through Captured-Carbon Products .. 221
7.5 Captured-Carbon Products from Engineered
Cyanobacteria ......................................... 222
7.5.1 Isobutyraldehyde ............................... 222
7.5.2 Isobutanol ..................................... 222
7.5.3 Fatty Acids .................................... 223
7.5.4 Hydrocarbons ................................... 223
7.5.5 1-Butanol ...................................... 224
7.5.6 Isoprene ....................................... 224
7.5.7 Hydrogen ....................................... 225
7.5.8 Poly-3-hydroxybutyrate ......................... 225
7.5.9 Indirect Production Technology ................. 225
7.6 Conclusion ............................................ 227
References ................................................. 227
8 Hydrogen Production by Microalgae .......................... 231
Helena M. Amaro, M. Glória Esquivel, Teresa S. Pinto,
and F. Xavier Malcata
8.1 Introduction .......................................... 231
8.2 Hydrogenase Engineering ............................... 233
8.3 Metabolic Reprograming ................................ 233
8.4 Light Capture Improvement ............................. 236
Acknowledgments ............................................ 238
References ................................................. 238
9 Algal Biofuels ............................................. 243
Archana Tiwari andAnjana Pandey
9.1 Introduction .......................................... 243
9.2 Advantages of Algae ................................... 243
9.3 Algal Strains and Biofuel Production .................. 246
9.4 Algal Biofuels ........................................ 247
9.4.1 Complete Cell Biomass .......................... 247
9.4.2 Lipids ......................................... 247
9.4.3 Biodiesel ...................................... 248
9.4.4 "Advantages of Biodiesel from Algae Oil ........ 249
9.4.5 Hydrocarbons ................................... 250
9.4.6 Hydrogen ....................................... 250
9.4.7 Ethanol ........................................ 251
9.4.8 Unique Products ................................ 251
9.5 Algal Cultivation for Biofuel Production .............. 252
9.5.1 Carbon Dioxide Capture ......................... 252
9.5.2 Light .......................................... 252
9.5.3 Nutrient Removal ............................... 253
9.5.4 Temperature .................................... 253
9.5.5 Biomass Harvesting ............................. 253
9.6 Photobioreactors Employed for Algal Biofuels .......... 254
9.6.1 Tubular Photobioreactors ....................... 254
9.6.2 Flat Panel Photobioreactors .................... 255
9.6.3 Offshore Membrane Enclosure for Growing Algae
(OMEGA) ........................................ 255
9.7 Recent Achievements in Algal Biofuels ................. 255
9.8 Strategies for Enhancement of Algal Biofuel
Production ............................................ 258
9.8.1 Biorefinery: The High-Value Coproduct
Strategy ....................................... 258
9.8.2 Exploration of Growth Conditions and
Nutrients ...................................... 259
9.8.3 Design of Advanced Photobioreactors ............ 259
9.8.4 Biotechnological Tools ......................... 260
9.8.5 Cost-Effective Technologies for Biomass
Harvesting and Drying .......................... 260
9.9 Conclusion ............................................ 261
References ................................................. 261
10 Green Hydrogen: Algal Biohydrogen Production ............... 267
Ela Eroglu, Matthew Timmins, and Steven M. Smith
10.1 Introduction .......................................... 267
10.2 Hydrogen Production by Algae .......................... 267
10.3 Hydrogenase Enzyme .................................... 269
10.4 Diversity of Hydrogen-Producing Algae ................. 270
10.5 Model Microalgae for H2 Production Studies:
Chlamydomonas Reinhardtii ............................. 272
10.6 Approaches for Enhancing Hydrogen Production .......... 273
10.6.1 Immobilization Processes ....................... 273
10.6.2 Increasing the Resistance of Algal Cells to
Stress Conditions .............................. 274
10.6.3 Optimization of Bioreactor Conditions .......... 275
10.6.4 Integrated Photosynthetic Systems .............. 276
10.6.5 Genetic Engineering Approaches to Improve
Photosynthetic Efficiency ...................... 278
10.6.6 Metabolic Pathways of H2 Production ............ 278
10.7 Conclusion ............................................ 279
References ................................................. 279
11 Growth in Photobioreactors ................................. 285
Niels Thomas Eriksen
11.1 Introduction .......................................... 285
11.2 Design of Photobioreactors ............................ 286
11.3 Limitations to Productivity of Microalgal Cultures .... 287
11.4 Actual Productivities of Microalgal Cultures .......... 290
11.5 Distribution of Light in Photobioreactors ............. 292
11.6 Gas Exchange in Photobioreactors ...................... 294
11.7 Shear Stress in Photobioreactors ...................... 297
11.8 Current Trends in Photobioreactor Development ......... 298
Acknowledgment ............................................. 299
References ................................................. 299
12 Industrial Cultivation Systems for Intensive
Production of Microalgae ................................... 307
Giuseppe Olivieri, Piero Salatino, and Antonio Marzocchella
12.1 Introduction .......................................... 307
12.2 Relevant Issues for Design and Operation of Systems for
Microalgal Cultures ................................... 308
12.2.1 Stoichiometry of Microalgal Growth ............. 308
12.2.2 Microalgal Kinetics ............................ 308
12.2.3 Mass Balance ................................... 312
12.2.4 Energy Balance ................................. 312
12.2.5 Basic System Design of Microalgal Cultivation .. 313
12.2.6 Gas-Liquid Mass Transport ...................... 317
12.2.7 Mixing ......................................... 317
12.3 Open Systems .......................................... 318
12.3.1 Typologies ..................................... 318
12.3.2 Mass Balances .................................. 319
12.3.3 Energy Balance ................................. 320
12.3.4 Gas-Liquid Mass Transfer ....................... 320
12.4 Closed Systems: Photobioreactors ...................... 321
12.4.1 Photobioreactor Typologies ..................... 321
12.4.2 Mass Balances .................................. 321
12.4.3 Energy Balance ................................. 323
12.4.4 Cultivation System Design ...................... 323
12.4.5 Gas-Liquid Mass Transfer ....................... 325
12.5 Novel Photobioreactor Configurations .................. 326
12.6 Case Study: Intensive Production of Bio-Oil ........... 333
12.6.1 Assessment of Maximum Productivity ............. 333
12.6.2 Economic Assessment ............................ 334
Acknowledgments ............................................ 337
References ................................................. 337
13 Microalgae Biodiesel and Macroalgae Bioethanol: The Solar
Conversion Challenge for Industrial Renewable Fuels ........ 345
Navid R. Moheimani, Mark P. McHenry, and Pouria Mehrani
13.1 Introduction .......................................... 345
13.2 Biofuel Supply, Demand, Production, and New Feedstocks 346
13.3 Feasibility of Photosynthetic Fuel Production ......... 348
13.4 Biodiesel Production and Feedstocks ................... 349
13.5 Macroalgae Biofuel Feedstocks and Production .......... 352
13.6 Conclusion ............................................ 354
References ................................................. 355
14 Technoeconomic Assessment of Large-Scale Production of
Bioethanol from Microalgal Biomass ......................... 361
Razif Harun, Hassan J., Li J.S. Shu, Lucy A. Arthur, and
Michael K. Danquah
14.1 Introduction .......................................... 361
14.2 Technology Selection and Process Design ............... 362
14.2.1 Design Basis ................................... 362
14.2.2 Strain Selection ............................... 362
14.2.3 Technology Selection ........................... 362
14.2.4 Process Design ................................. 364
14.3 Economic Analysis ..................................... 375
14.3.1 Capital Cost Estimates ......................... 376
14.3.2 Major Equipment Cost (MEC) ..................... 376
14.3.3 Fixed Capital Investments and Working Capital .. 376
14.3.4 Operating Cost Estimates ....................... 377
14.3.5 Cost of Ethanol Production ..................... 378
14.3.6 Overall Production Cost ........................ 381
14.3.7 Profitability .................................. 381
14.4 Reduction of Overall Production Cost .................. 383
14.5 Conclusion ............................................ 384
References ................................................. 385
15 Microalgae-Derived Chemicals: Opportunity for an
Integrated Chemical Plant .................................. 387
Azadeh Kermanshahi-pour, Julie B. Zimmerman, and Paul
T. Anastas
15.1 Introduction .......................................... 387
15.2 Microalgae Cultivation Systems ........................ 388
15.2.1 Outdoor Open Systems ........................... 389
15.2.2 Outdoor Enclosed Systems ....................... 389
15.2.3 Fermenter-Type Reactors ........................ 392
15.3 Lipids ................................................ 392
15.3.1 Polyunsaturated Fatty Acids .................... 392
15.3.2 Carotenoids .................................... 402
15.4 Carbohydrates ......................................... 408
15.4.1 Polysaccharides ................................ 410
15.5 Protein ............................................... 410
15.5.1 Phycobiliproteins .............................. 412
15.6 Process Integration ................................... 413
15.7 Conclusion ............................................ 420
References ................................................. 422
16 Fuels and Chemicals from Lignocellulosic Biomass ........... 435
Ian M. O'Hara, Zhanying Zhang, Philip A. Hobson, Mark D.
Harrison, Sagadevan G. Mundree, and William O. S. Doherty
16.1 Introduction .......................................... 435
16.2 The Nature of Lignocellulosic Biomass ................. 436
16.2.1 Cellulose ...................................... 436
16.2.2 Hemicellulose .................................. 438
16.2.3 Lignin ......................................... 438
16.3 Feedstocks for Biomass Processing ..................... 439
16.3.1 Agricultural Residues .......................... 440
16.3.2 Forest Residues ................................ 441
16.4 Production of Fermentable Sugars from Biomass ......... 441
16.4.1 Pretreatment of Biomass ........................ 442
16.4.2 Enzymatic Hydrolysis of Cellulose .............. 443
16.4.3 Enzymatic Hydrolysis of Hemicellulose .......... 444
16.4.4 Enzymatic Hydrolysis of Pretreated Biomass by
Industrial Cellulase Mixtures .................. 444
16.5 Thermochemical Conversion of Biomass to Fuels and
Chemicals ............................................. 445
16.5.1 Gasification ................................... 445
16.5.2 Pyrolysis ...................................... 446
16.5.3 Liquefaction ................................... 447
16.6 Fuels and Chemicals from Biomass ...................... 449
16.7 Conclusion ............................................ 449
References ................................................. 450
Index ......................................................... 457
|