Iversen B. Lecture notes on local rings (Singapore, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIversen B. Lecture notes on local rings / ed. by H.A.Nielsen. - Singapore: World scientific, 2014. - x, 213 p. - Bibliogr.: p.207-209. - Ind.: p.211-213. - ISBN 978-981-4603-65-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v

1  Dimension of a Local Ring .................................... 1
   1.1  Nakayama's lemma ........................................ 1
   1.2  Prime ideals ............................................ 2
   1.3  Noetherian modules ...................................... 4
   1.4  Modules of finite length ................................ 6
   1.5  Hubert's basis theorem .................................. 8
   1.6  Graded rings ............................................ 9
   1.7  Filtered rings ......................................... 11
   1.8  Local rings ............................................ 13
   1.9  Regular local rings .................................... 17
2  Modules over a Local Ring ................................... 19
   2.1  Support of a module .................................... 19
   2.2  Associated prime ideals ................................ 20
   2.3  Dimension of a module .................................. 22
   2.4  Depth of a module ...................................... 24
   2.5  Cohen-Macaulay modules ................................. 25
   2.6  Modules of finite projective dimension ................. 27
   2.7  The Koszul complex ..................................... 29
   2.8  Regular local rings .................................... 31
   2.9  Projective dimension and depth ......................... 32
   2.10 J-depth ................................................ 34
   2.11 The acyclicity theorem ................................. 36
   2.12 An example ............................................. 39
3  Divisor Theory .............................................. 43
   3.1  Discrete valuation rings ............................... 43
   3.2  Normal domains ......................................... 44
   3.3  Divisors ............................................... 46
   3.4  Unique factorization ................................... 47
   3.5  Torsion modules ........................................ 48
   3.6  The first Chern class .................................. 49
   3.7  Regular local rings .................................... 51
   3.8  Picard groups .......................................... 51
   3.9  Dedekind domains ....................................... 54
4  Completion .................................................. 57
   4.1  Exactness of the completion functor .................... 57
   4.2  Separation of the J-adic topology ...................... 59
   4.3  Complete filtered rings ................................ 60
   4.4  Completion of local rings .............................. 61
   4.5  Structure of complete local rings ...................... 63
5  Injective Modules ........................................... 65
   5.1  Injective modules ...................................... 65
   5.2  Injective envelopes .................................... 67
   5.3  Decomposition of injective modules ..................... 68
   5.4  Matlis duality ......................................... 70
   5.5  Minimal injective resolutions .......................... 73
   5.6  Modules of finite injective dimension .................. 74
   5.7  Gorenstein rings ....................................... 77
6  Local Cohomology ............................................ 81
   6.1  Basic properties ....................................... 81
   6.2  Local cohomology and dimension ......................... 84
   6.3  Local cohomology and depth ............................. 84
   6.4  Support in the maximal ideal ........................... 85
   6.5  Local duality for Gorenstein rings ..................... 87
7  Dualizing Complexes ......................................... 89
   7.1  Complexes of injective modules ......................... 89
   7.2  Complexes with finitely generated cohomology ........... 93
   7.3  The evaluation map ..................................... 96
   7.4  Existence of dualizing complexes ....................... 98
   7.5  The codimension function .............................. 100
   7.6  Complexes of flat modules ............................. 102
   7.7  Generalized evaluation maps ........................... 105
   7.8  Uniqueness of dualizing complexes ..................... 107
8  Local Duahty ............................................... 109
   8.1  Poincare series ....................................... 109
   8.2  Grothendieck's local duality theorem .................. 113
   8.3  Duality for Cohen-Macaulay modules .................... 117
   8.4  Dualizing modules ..................................... 119
   8.5  Locally factorial domains ............................. 121
   8.6  Conductors ............................................ 122
   8.7  Formal fibers ......................................... 125
9  Amplitude and Dimension .................................... 129
   9.1  Depth of a complex .................................... 130
   9.2  The dual of a module .................................. 136
   9.3  The amphtude formula .................................. 137
   9.4  Dimension of a complex ................................ 139
   9.5  The tensor product formula ............................ 142
   9.6  Depth inequalities .................................... 144
   9.7  Condition Sr of Serre ................................. 148
   9.8  Factorial rings and condition Sr ...................... 152
   9.9  Condition S'r ......................................... 155
   9.10 Specialization of Poincare series ..................... 158
10 Intersection Multiplicities ................................ 161
   10.1 Introduction to Serre's conjectures ................... 161
   10.2 Filtration of the Koszul complex ...................... 163
   10.3 Euler characteristic of the Koszul complex ............ 167
   10.4 A projection formula .................................. 170
   10.5 Power series over a field ............................. 171
   10.6 Power series over a discrete valuation ring ........... 175
   10.7 Application of Cohen's structure theorem .............. 178
   10.8 The amplitude inequality .............................. 181
   10.9 Translation invariant operators ....................... 182
   10.10 Todd operators ....................................... 184
   10.11 Serre's conjecture in the graded case ................ 187
11 Complexes of Free Modules .................................. 189
   11.1 McCoy's theorem ....................................... 189
   11.2 The rank of a linear map .............................. 191
   11.3 The Eisenbud-Buchsbaum criterion ...................... 194
   11.4 Fitting's ideals ...................................... 196
   11.5 The Euler characteristic .............................. 199
   11.6 McRae's invariant ..................................... 203
   11.7 The integral character of McRae's invariant ........... 205

Bibliography .................................................. 207
Index ......................................................... 211


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:12 2019. Размер: 10,778 bytes.
Посещение N 1428 c 22.12.2015