| Hartmann J.-M. Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications / J.-M.Hartmann, C.Boulet, D.Robert. - Amsterdam; Oxford: Elsevier, 2008. - xv, 411 p.: ill. - Bibliogr.: 365-407. - Sub. ind.: p.409-411. - ISBN 978-0-444-52017-3
|
FOREWORD ..................................................... xiii
ACKNOWLEDGMENTS ................................................ xv
I INTRODUCTION ............................................... 1
II GENERAL EQUATIONS .......................................... 9
II.1 INTRODUCTION ......................................... 9
II.2 DIPOLE AUTOCORRELATION FUNCTION ..................... 10
II.2.1 General formalism .............................. 10
II.2.2 The Hamiltonian of the molecular system ........ 13
II.3 TOWARD "CONVENTIONAL" IMPACT THEORIES ............... 16
II.3.1 General properties of the correlation
function ....................................... 16
II.3.2 The binary collision approximation ............. 17
II.3.3 Initial statistical correlations ............... 19
II.3.4 The impact approximation ....................... 20
II.4 BEYOND THE IMPACT APPROXIMATION ..................... 23
II.5 EFFECTS OF THE RADIATOR TRANSLATIONAL MOTION ....... 25
II.6 COLLISION-INDUCED SPECTRA ........................... 28
II.7 CONCLUSION .......................................... 33
APPENDICES
II.A Spectral and time domain profiles in various
spectroscopies ......................................... 33
1. Absoфtion, emission, and dispersion ................. 33
2. Rayleigh and spontaneous Raman scatterings .......... 35
3. Nonlinear Raman spectroscopies ...................... 38
4. Time-resolved Raman spectroscopies .................. 42
II.B Some criteria for the approximations ............... 44
1. The large number of perturbers ...................... 44
2. The local thermodynamic equilibrium ................. 45
3. The binary collisions ............................... 47
4. The (full) impact assumption ........................ 49
II.C The impact relaxation matrix ........................ 50
1. Analysis through the time dependence ................ 50
2. Analysis through the frequency dependence ........... 54
II.D The Liouville space ................................. 55
II.E The resolvent approach .............................. 58
1. Spectral-shape expression ........................... 58
2. Rotational invariance ............................... 60
3. Detailed balance .................................... 61
III ISOLATED LINES ............................................ 63
III.1 INTRODUCTION ....................................... 63
III.2 DOPPLER BROADENING AND DICKE NARROWING ............. 73
III.2.1 The Doppler broadening ........................ 74
III.2.2 The Dicke narrowing ........................... 75
III.3 BASIC MODELS FOR SPECTRAL LINE SHAPES .............. 77
III.3.1 The Lorentz profile ........................... 77
III.3.2 The Dicke profile ............................. 78
III.3.3 The Voigt profile ............................. 79
III.3.4 The Galatry profile ........................... 80
III.3.5 The Nelkin-Ghatak profile ..................... 81
III.3.6 Correlated profiles ........................... 83
III.3.7 Characteristics of the basic profiles ......... 85
III.4 SPEED-DEPENDENT LINE-SHAPE MODELS .................. 90
III.4.1 Observation of speed-dependent
inhomogeneous profiles ........................ 90
III.4.2 Basic speed-dependent profiles ................ 98
III.4.3 The Rautian-Sobelman model ................... 104
III.4.4 The Keilson-Storer memory model .............. 114
III.5 AB INITIO APPROACHES OF THE LINE SHAPE ............ 126
III.5.1 The Waldmann-Snider kinetic equation ......... 126
III.5.2 The generalized Hess method .................. 128
III.5.3 Collision kernel method ...................... 130
III.5.4 Approaches from a simplified Waldmann-Snider
equation ..................................... 133
III.6 CONCLUSION ........................................ 139
APPENDIX
III. A Computational aspects ............................ 140
1. Algorithms for the Voigt and Galatry profiles ...... 140
2. Computation of speed-dependent profiles ............ 142
IV COLLISIONAL LINE MIXING (WITHIN CLUSTERS OF LINES) ....... 147
IV.l INTRODUCTION ....................................... 147
IV.2 THE SPECTRAL SHAPE ................................. 154
IV.2.1 Approximations and general expressions ........ 154
IV.2.2 Asymptotic expansions ......................... 158
IV.2.3 Computational aspects and recommendations ..... 169
IV.3 CONSTRUCTING THE IMPACT RELAXATION MATRIX .......... 173
IV.3.1 Simple empirical (classical) approaches ....... 174
IV.3.2 Statistically based energy gap fitting laws ... 181
IV.3.3 Dynamically based scaling laws ................ 188
IV.3.4 Semi-classical models ......................... 199
IV.3.5 Quantum models ................................ 211
IV.4 DETERMINING LINE-MIXING PARAMETERS FROM
EXPERIMENTS ........................................... 218
IV.4.1 Introduction .................................. 218
IV.4.2 Relaxation matrix elements .................... 222
IV.4.3 First-order line-coupling coefficients ........ 224
IV.4.4 Mixed theoretical model and measured spectra
fitting approaches ............................ 227
IV.5 LITERATURE REVIEW .................................. 227
IV.5.1 Available line-mixing data .................... 228
IV.5.2 Comparisons between predictions and
laboratory measurements ....................... 229
IV.5.3 Comparisons between predictions and
atmospheric measurements ...................... 232
IV.6 CONCLUSION ......................................... 232
APPENDICES
IV.A Vibrational dephasing .............................. 233
IV.B Perturbed wave functions ........................... 237
IV.C Resonance broadening ............................... 238
V THE FAR WINGS (BEYOND THE IMPACT APPROXIMATION) .......... 241
V.l INTRODUCTION ........................................ 241
V.2 EMPIRICAL MODELS .................................... 243
V.2.1 The X factor approach .......................... 243
V.2.2 The tabulated continua ......................... 246
V.2.3 Other approaches ............................... 248
V.3 FAR WINGS CALCULATIONS: THE QUASISTATIC APPROACH .... 248
V.3.1 General expressions ............................ 249
V.3.2 Practical implementation and typical results ... 252
V.3.3 The band average line shape: back to the X
factors ........................................ 255
V.4 FROM RESONANCE TO THE FAR WING: A PERTURBATIVE
TREATMENT .......................................... 257
V.4.1 General expressions ............................ 257
V.4.2 Illustrative results ........................... 259
V.5 FROM RESONANCE TO THE FAR WING: A NON-PERTURBATIVE
TREATMENT ........................................... 261
V.5.1 General expression ............................. 261
V.5.2 Illustrative results ........................... 263
V.6 CONCLUSION .......................................... 265
APPENDIX
V.A The water vapor continuum ........................... 266
1. Definition, properties and semi-empirical modeling
of the H2O continuum ............................... 268
2. On the origin of the water vapor continua .......... 269
3. The self- and N2-broadened continua within the V2
band ............................................... 271
4. Conclusion ......................................... 272
VI COLLISION-INDUCED ABSORPTION AND LIGHT SCATTERING ........ 275
VI.1 INTRODUCTION ....................................... 275
VI.2 COLLISION-INDUCED DIPOLES AND POLARIZABILITIES FOR
DIATOMIC MOLECULES ................................. 276
VI.3 COLLISION-INDUCED SPECTRA IN THE ISOTROPIC
APPROXIMATION ...................................... 277
VI.3.1 Two illustrative examples: H2 and N2 .......... 277
VI.3.2 Modeling of the line shape .................... 281
VI.4 EFFECTS OF THE ANISOTROPY OF THE INTERACTION
POTENTIAL .......................................... 284
VI.5 THE IMPORTANCE OF BOUND AND QUASIBOUND STATES IN
CIA SPECTRA ........................................ 290
VI.6 INTERFERENCE BETWEEN PERMANENT AND INDUCED
DIPOLES (CIA) OR POLARIZABILITIES (CILS) ........... 293
VI.6.1 Depolarized light scattering spectra of H2
and N2 ............................................. 294
VI.6.2 The HD problem ................................ 296
VI.6.3 Intercollisional dips ......................... 300
VI.7 CONCLUSION ......................................... 301
VII CONSEQUENCES FOR APPLICATIONS ............................ 303
VII.1 INTRODUCTION ...................................... 303
VII.2 BASIC EQUATIONS ................................... 304
VII.2.1 Radiative heat transfer ...................... 304
VII.2.2 Remote sensing ............................... 307
VII.3 ISOLATED LINES .................................... 311
VII.3.1 The basic Lorentz and Voigt profiles ......... 311
VII.3.2 More refined isolated line profiles .......... 314
VII.4 LINE MIXING WITHIN CLUSTERS OF LINES .............. 318
VII.5 ALLOWED BAND WINGS AND CIA ........................ 325
VII.5.1 Allowed band wings ........................... 325
VII.5.2 Collision-induced absorption ................. 331
VII.6 CONCLUSION ........................................ 333
VIII TOWARD FUTURE RESEARCHES ................................. 335
VIII.l INTRODUCTION ...................................... 335
VIII.2 DICKE NARROWING IN SPEED-DEPENDENT LINE-MIXING
PROFILES ......................................... 335
VIII.2.1 Models of profiles in the hard collision
frame ............................................ 335
VIII.2.2 Experimental tests in multiplet spectra ..... 339
VIII.3 FROM RESONANCES TO THE FAR WINGS ................. 343
VIII.3.1 Semi-classical approach ..................... 344
VIII.3.2 Generalized scaling approach ................ 348
VIII.4 TOMORROW'S SPECTROSCOPIC DATABASES ............... 348
VIII.4.1 Isolated lines .............................. 349
VIII.4.2 Line mixing ................................. 351
VIII.4.3 Far-wings and collision-induced absorption .. 352
VIII.5 CONCLUSION ....................................... 354
APPENDIX .................................................... 357
ABBREVLVTIONS AND ACRONYMS .................................... 357
SYMBOLS ....................................................... 360
UNITS AND CONVERSIONS ......................................... 362
REFERENCES .................................................... 365
SUBJECT INDEX ................................................. 409
|
|