The chemistry of contrast agents in medical magnetic resonance imaging (Chichester, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThe chemistry of contrast agents in medical magnetic resonance imaging / ed. by A.Merbach, L.Helm, É.Toth. - 2nd ed. - Chichester: Wiley, 2013. - xiv, 496 p.: ill. - Incl. bibl. ref. - Ind.: p.489-496. - ISBN 978-1-119-99176-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Ust of Contributors .......................................... xiii
Preface ........................................................ xv

1  General Principles of MRI .................................... 1
   Bich-Thuy Doan, Sandra Meme, and Jean-Claude Beloeil
   1.1  Introduction ............................................ 1
   1.2  Theoretical basis of NMR ................................ 1
        1.2.1  Short description of NMR ......................... 1
        1.2.2  Relaxation times ................................. 4
        1.2.3  Saturation transfer .............................. 4
        1.2.4  Concept of localization by magnetic field
               gradients ........................................ 4
   1.3  Principles of magnetic resonance imaging ................ 5
        1.3.1  Spatial encoding ................................. 5
   1.4  MRI pulse sequences .................................... 11
        1.4.1  Definition ...................................... 11
        1.4.2  k-Space trajectory .............................. 12
        1.4.3  Basic pulse sequences ........................... 13
   1.5  Basic image contrast: Tissue characterization without
        injection of  contrast agents (main contrast of an
        MRI sequence: Proton density (P), T1 and T2, T2*) ...... 16
        1.5.1  Proton density weighting ........................ 17
        1.5.2  T1 weighting .................................... 17
        1.5.3  T2 weighting .................................... 17
        1.5.4  T2* weighting ................................... 18
   1.6  Main contrast-agents ................................... 18
        1.6.1  Gadolinium (Gd) complex agents .................. 19
        1.6.2  Iron oxide (IO) agents .......................... 19
        1.6.3  CEST agents ..................................... 20
   1.7  Examples of specialized MRI pulse sequences for
        angiography (MRA) ...................................... 21
        1.7.1  Time of flight angiography: No contrast agent ... 21
        1.7.2  Angiography using intravascular contrast agent
               (Blood pool CA) injection ....................... 21
        1.7.3  DSC DCE MRI ..................................... 23
   References .................................................. 23
2  Relaxivity of GadoIinium(III) Complexes: Theory and
   Mechanism ................................................... 25
   Éva Tóth, Lothar Helm, and André Merbach
   2.1  Introduction ........................................... 25
   2.2  Inner-sphere proton relaxivity ......................... 28
        2.2.1  Hydration number and hydration equilibria ....... 31
        2.2.2  Gd-H distance ................................... 37
        2.2.3  Proton/water exchange ........................... 39
        2.2.4  Rotation ........................................ 57
   2.3  Second- and outer-sphere relaxation .................... 64
   2.4  Relaxivity and NMRD profiles ........................... 66
        2.4.1  Fitting of NMRD profiles ........................ 66
        2.4.2  Relaxivity of low-molecular-weight Gd(III)
               complexes ....................................... 68
        2.4.3  Relaxivity of macromolecular MRI contrast
               agents .......................................... 69
        2.4.4  Contrast agents optimized for application at
               high magnetic field ............................. 73
   2.5  Design of high relaxivity agents: Summary .............. 75
   References .................................................. 76
3  Synthesis and Characterization of Ligands and their
   Gadolinium(III) Complexes ................................... 83
   Jan Kotek, Vojtěch Kubíček, Petr Hermann, and Ivan Lukeš
   3.1  Introduction - general requirements for the ligands
        and complexes .......................................... 83
   3.2  Contrast agents employing linear polyamine scaffold .... 84
        3.2.1  Synthesis of linear polyamine backbone .......... 85
        3.2.2  N-functionalization of linear polyamine
               scaffold ........................................ 89
   3.3  Contrast agents employing cyclen scaffold ............. 103
        3.3.1  Synthesis of the macrocyclic skeleton .......... 103
        3.3.2  N-functionalization of macrocyclic scaffold .... 106
   3.4  Other types of ligands ................................ 123
        3.4.1  H4TRITA and related ligands .................... 123
        3.4.2  H3PCTA and related ligands ..................... 123
        3.4.3  TACN derivatives ............................... 126
        3.4.4  Ligands with HOPO coordinating arms and
               related groups ................................. 130
        3.4.5  H4AAZTA and related ligands .................... 133
   3.5  Bifunctional ligands and their conjugations ........... 134
   3.6  Synthesis and characterization of the Ln(III)
        complexes ............................................. 138
        3.6.1  General synthetic remarks ...................... 138
        3.6.2  Characterization of the complexes .............. 139
   List of Abbreviations ...................................... 144
   References ................................................. 146
4  Stability and Toxicity of Contrast Agents .................. 157
   Ernõ Brücher, Gyula Tircsó, Zsolt Baranyai, Zoltan
   Kovács, and A. Dean Sherry
   4.1  Introduction .......................................... 157
   4.2  Equilibrium calculations .............................. 158
        4.2.1  Constants that characterize metal ligand
               interactions (protonation constants of the
               ligands, stability constants of the complexes,
               conditional stability constants, ligand
               selectivity, and concentration of free Gd3+:
               pM) ............................................ 158
        4.2.2  A brief overview of the programs used in
               equilibrium calculations (calculation
               of protonation constants, stability
               constants, and equilibrium speciation
               diagrams) ...................................... 159
   4.3  Stability of metal-ligand complexes ................... 160
        4.3.1  Stability of complexes of open chain ligands
               (EDTA, DTPA, EGTA, and TTHA) ................... 160
        4.3.2  Stability of complexes of tripodal and AAZTA
               ligands ........................................ 165
        4.3.3  Stability of complexes of macrocyclic ligands .. 168
        4.3.4  Ternary complexes formed between the Ln(L)
               complexes and various bio-ligands .............. 176
        4.3.5  Mn2+-based contrast agents ..................... 179
   4.4  Kinetics of M(L) complex formation .................... 184
        4.4.1  Formation kinetics of DOTA complexes ........... 184
        4.4.2  Formation kinetics of complexes of simple
               DOTA-tetraamides ............................... 186
   4.5  Dissociation of M(L) complexes ........................ 186
        4.5.1  Inertness of complexes of open chain ligands
               (EDTA, DTPA, and AAZTA) ........................ 187
        4.5.2  Decomplexation of DOTA complexes ............... 190
        4.5.3  Decomplexation of DOTA-tetraamide complexes .... 192
   4.6  Biodistribution and in vivo toxicity of Gd3+-based
        MRI contrast agents ................................... 193
        4.6.1  Osmolality and hydrophobicity of Gd3+-based
               MRI contrast agents ............................ 193
        4.6.2  Biodistribution ................................ 194
        4.6.3  In vivo toxicity ............................... 195
        4.6.4  Predicting in vivo toxicity of Gd3+-based
               contrast agents using thermodynamic
               conditional stability constants ................ 195
        4.6.5  The role of kinetic inertness in determining
               in vivo toxicity ............................... 196
        4.6.6  Kinetic inertness combined with thermodynamic
               stability is the best predictor of in vivo
               toxicity ....................................... 197
        4.6.7  Nephrogenic systemic fibrosis (NSF) ............ 199
   4.7  Concluding remarks .................................... 201
   Acknowledgements ........................................... 201
   References ................................................. 201
5  Structure, Dynamics, and Computational Studies of
   Lanthanide-Based Contrast Agents ........................... 209
   Joop A. Peters, Kristina Djanashvili, Carlos F.G.C.
   Geraides, and Carlos Platas-Iglesias
   5.1  Introduction .......................................... 209
   5.2  Computational methods ................................. 210
   5.3  Lanthanide-induced NMR shifts ......................... 213
        5.3.1  Bulk magnetic susceptibility shifts ............ 213
        5.3.2  Diamagnetic shifts ............................. 213
        5.3.3  Contact shifts ................................. 214
        5.3.4  Pseudocontact shifts ........................... 215
        5.3.5  Evaluation of bound shifts ..................... 216
        5.3.6  Separation of shift contributions .............. 217
   5.4  Lanthanide-induced relaxation rate enhancements ....... 219
        5.4.1  Evaluation of bound relaxation rates ........... 219
        5.4.2  Inner-sphere relaxation ........................ 219
        5.4.3  Outer-sphere relaxation ........................ 221
   5.5  Anisotropic hyperfine interactions on the first
        coordination sphere water molecules ................... 221
   5.6  Evaluation of geometries by fitting NMR parameters .... 222
   5.7  Two-dimensional NMR ................................... 224
   5.8  139La and 89Y NMR ..................................... 224
   5.9  Water hydration numbers ............................... 225
   5.10 Chirality of lanthanide complexes of
        polyaminocarboxylates ................................. 227
   5.11 Complexes of non-macrocyclic polyaminocarboxylates .... 227
        5.11.1 DTPA and derivatives ........................... 227
        5.11.2 TTHA ........................................... 236
        5.11.3 EGTA ........................................... 238
        5.11.4 DTTA ........................................... 239
        5.11.5 Tripodal complexes ............................. 240
   5.12 Complexes of macrocyclic ligands ...................... 244
        5.12.1 DOTA and derivatives ........................... 244
        5.12.2 DO3A and derivatives ........................... 250
        5.12.3 PCTA and derivatives ........................... 252
        5.12.4 TETA ........................................... 253
        5.12.5 DOTP ........................................... 254
        5.12.6 Phosphinates and phosphonate esters ............ 257
        5.12.7 Cationic macrocyclic lanthanide complexes ...... 260
        5.12.8 AAZTA .......................................... 264
   5.13 Fullerenes ............................................ 265
   References ................................................. 267
6  Electronic Spin Relaxation and Outer-Sphere Dynamics of
   Gadolinium-Based Contrast Agents ........................... 277
   Pascal H. Fries and Elie Belorizky
   6.1  Introduction .......................................... 277
   6.2  Theory of electronic spin relaxation of Gd3+ ions ..... 279
        6.2.1  Classical approach: Bloch equations ............ 279
        6.2.2  Quantum approach: Electronic time correlation
               functions ...................................... 281
        6.2.3  The zero-field splitting Hamiltonian ........... 281
        6.2.4  The density matrix formalism ................... 284
        6.2.5  The Redfield approximation ..................... 285
        6.2.6  The Swedish super-operator approaches .......... 287
        6.2.7  Monte-Carlo simulation of the Gd3+ electronic
               relaxation: The Grenoble method ................ 288
   6.3  Outer-sphere dynamics ................................. 289
        6.3.1  Standard theory neglecting the electronic
               relaxation ..................................... 289
        6.3.2  Analytical hard-sphere models .................. 291
        6.3.3  The general case of anisotropic polyatomic
               molecules ...................................... 292
        6.3.4  Experimental determination of the dipolar
               time correlation function ...................... 292
   6.4  Relaxivity quenching by the electronic spin
        relaxation ............................................ 295
        6.4.1  The various field regimes ...................... 295
        6.4.2  Outer-sphere relaxivity ........................ 295
        6.4.3  Inner- and second-sphere relaxivities .......... 297
        6.4.4  Application to a cyclodecapeptide Gd3+
               complex ........................................ 299
   6.5  Various experimental approaches of the electronic
        spin relaxation ....................................... 301
        6.5.1  Outer-sphere relaxivity profiles ............... 301
        6.5.2  EPR spectroscopy ............................... 302
   6.6  Conclusion and perspectives ........................... 306
   6.7  Appendix: Similar evolutions of the macroscopic
        magnetization of the electronic spin and of its
        correlation functions ................................. 307
   References ................................................. 308
7  Targeted MRI Contrast Agents ............................... 311
   Peter Caravan and Zhaoda Zhang
   7.1  Introduction .......................................... 311
   7.2  Serum albumin ......................................... 313
   7.3  Fibrin ................................................ 319
   7.4  Type I collagen ....................................... 325
   7.5  Elastin ............................................... 326
   7.6  Sialic acid ........................................... 327
   7.7  αηβ3 integrin ......................................... 328
   7.8  Folate receptor ....................................... 329
   7.9  Matrix metalloproteinases (MMP) ....................... 330
   7.10 E-selectin ............................................ 331
   7.11 Fibrin-fibronectin complex ............................ 332
   7.12 Alanine aminopeptidase (CD13) ......................... 332
   7.13 Carbonic anhydrase .................................... 333
   7.14 Interleukin 6 receptor ................................ 334
   7.15 Estrogen and progesterone receptors ................... 335
   7.16 Contrast agents based on natural products ............. 336
   7.17 Messenger RNA (mRNA) .................................. 337
   7.18 Myelin ................................................ 338
   7.19 DNA ................................................... 338
   7.20 Conclusions ........................................... 340
   References ................................................. 340
8  Responsive Probes .......................................... 343
   Célia S. Bonnet, Lorenzo Tei, Mauro Botta, and Éva Tóth
   8.1  Introduction .......................................... 343
   8.2  Probes responsive to physiological parameters ......... 344
        8.2.1  Temperature responsive probes .................. 344
        8.2.2  pH sensing ..................................... 349
        8.2.3  Redox responsive probes ........................ 360
        8.2.4  Sensing of biologically relevant ions .......... 364
        8.2.5  Enzyme responsive probes ....................... 373
   8.3  Conclusions ........................................... 381
   References ................................................. 382
9  Paramagnetic CEST MRI Contrast Agents ...................... 387
   Enzo Terreno, Daniela Delii Castelli, and Silvio Aime
   9.1  Introduction .......................................... 387
   9.2  Theoretical and practical considerations on CEST
        response .............................................. 388
        9.2.1  NMR/chemical properties of CEST site(s) ........ 391
        9.2.2  NMR properties of the wat site ................. 394
        9.2.3  Instrumental variables ......................... 395
        9.2.4  Variables dependent on the sample .............. 397
        9.2.5  Spectroscopic versus imaging detection of
               CEST response .................................. 399
        9.2.6  Characterization of a CEST agent and its
               quantification ................................. 400
   9.3  Diamagnetic versus paramagnetic CEST agents ........... 400
   9.4  Paramagnetic CEST agents .............................. 401
        9.4.1  ParaCEST agents ................................ 402
        9.4.2  SupraCEST agents ............................... 411
        9.4.3  NanoCEST agents ................................ 413
   9.5  Other exchange-mediated contrast modes accessible
        for paramagnetic CEST agents .......................... 419
   9.6  Concluding remarks .................................... 421
   References ................................................. 421
10 Superparamagnetic Iron Oxide Nanoparticles for MRI ......... 427
   Sophie Laurent, Luce Vander Eist, and Robert N. Muller
   10.1 Introduction .......................................... 427
   10.2 Synthesis of iron oxide nanoparticles ................. 428
        10.2.1 Coprecipitation in aqueous medium .............. 429
        10.2.2 Reverse micro-emulsions ........................ 430
        10.2.3 Sol gel methods ................................ 430
        10.2.4 Polyol methods ................................. 430
        10.2.5 Hydrothermal methods ........................... 430
        10.2.6 Sonochemistry methods .......................... 431
        10.2.7 Pyrolytic methods .............................. 431
   10.3 Stabilization ......................................... 431
        10.3.1  Steric stabilization: Natural or synthetic
                polymeric matrices ............................ 431
        10.3.2  Electrostatical stabilization ................. 432
   10.4  Methods of vectorization for molecular imaging ....... 432
   10.5  Characterization ..................................... 436
        10.5.1  Relaxivity and NMRD profiles .................. 436
   10.6  Applications ......................................... 440
        10.6.1 Tissue labelling with iron oxide particles ..... 441
        10.6.2 Cellular and molecular labelling with iron
               oxide particles ................................ 442
        10.6.3 Iron oxide nanoparticles as molecular MRI
               probes ......................................... 442
   10.7 Conclusions ........................................... 444
   Acknowledgements ........................................... 444
   References ................................................. 444
11 Gd-Containing Nanoparticles as MRI Contrast Agents ......... 449
   Klaas Nicolay, Gustav Strijkers, and Holger Grüll
   11.1 Introduction .......................................... 449
   11.2 Length scales and excretion pathways .................. 452
   11.3 Preparation of Gd-containing nanoparticles ............ 454
        11.3.1 Lipid aggregates ............................... 455
        11.3.2 Liposomes ...................................... 456
        11.3.3 Micelles ....................................... 457
        11.3.4 Other lipid-containing nanoparticles ........... 458
        11.3.5 Chemical structures of Gd-containing lipids .... 458
   11.4 Methods for nanoparticle characterization ............. 460
        11.4.1 Morphology ..................................... 461
        11.4.2 Particle composition ........................... 462
        11.4.3 Magnetic properties ............................ 464
        11.4.4 Chelate stability .............................. 467
        11.4.5 Miscellaneous techniques ....................... 468
   11.5 In vitro applications ................................. 468
        11.5.1 Target specificity ............................. 468
        11.5.2 Cellular interactions, internalization, and
               compartmentation ............................... 470
        11.5.3 Biological effects ............................. 475
   11.6 In vivo applications .................................. 475
        11.6.1 Target-specific imaging ........................ 476
        11.6.2 Image-guided drug delivery ..................... 478
   11.7 Conclusions and future perspectives ................... 481
   Acknowledgements ........................................... 483
   References ................................................. 483

Index ......................................................... 489


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:02 2019. Размер: 25,626 bytes.
Посещение N 1559 c 17.11.2015