Foreword ..................................................... ХIII
List of Contributors ........................................... XV
Introduction .................................................. XIX
1 Estimation of Thermodynamic Data of Metallic
Nanoparticles Based on Bulk Values ......................... 1
Dieter Vollath and Franz Dieter Fischer
1.1 Introduction ............................................... 1
1.2 Thermodynamic Background ................................... 2
1.3 Size-Dependent Materials Data of Nanoparticles ............. 4
1.4 Comparison of Experimental and Calculated Melting
Temperatures ............................................... 8
1.5 Comparison with Data for the Entropy of Melting ........... 16
1.6 Discussion of the Results ................................. 17
1.7 Conclusions ............................................... 19
Appendix: Zeros and Extrema of the Free Enthalpy of
Melting Gm-nano ............................................ 20
References ................................................ 21
2 Numerical Simulation of Individual Metallic
Nanoparticles ............................................. 25
D.S. Wen and P.X. Song
2.1 Introduction .............................................. 25
2.2 Molecular Dynamics Simulation ............................. 27
2.2.1 Motion of Atoms .................................... 27
2.2.2 Temperature and Potential Energy ................... 28
2.2.3 Ensembles .......................................... 29
2.2.4 Energy Minimization ................................ 30
2.2.5 Force Field ........................................ 30
2.2.6 Potential Truncation and Neighbor List ............. 31
2.2.7 Simulation Program and Platform .................... 32
2.3 Size-Dependent Properties ................................. 33
2.3.1 Introduction ....................................... 33
2.3.2 Simulation Setting ................................. 34
2.3.3 Size-Dependent Melting Phenomenon .................. 35
2.4 Sintering Study of Two Nanoparticles ...................... 38
2.4.1 Introduction ....................................... 38
2.4.2 Simulation Setting ................................. 40
2.4.3 Sintering Process Characterization ................. 40
2.5 Oxidation of Nanoparticles in the Presence of Oxygen ...... 45
2.5.1 Introduction ....................................... 45
2.5.2 Simulation Setting ................................. 47
2.5.3 Characterization of the Oxidation Process .......... 48
2.6 Heating and Cooling of a Core-Shell Structured Particle ... 54
2.6.1 Simulation Method .................................. 54
2.6.2 Heating Simulation ................................. 56
2.6.2.1 Solidification Simulation ................. 59
2.7 Chapter Summary ........................................... 61
References ................................................ 63
3 Electroexplosive Nanometals ............................... 67
Olga Nazarenko, Alexander Gromov, Alexander Il'in, Julia
Pautova, and Dmitry Tikhonov
3.1 Introduction .............................................. 67
3.2 Electrical Explosion of Wires Technology for Nanometals
Production ................................................ 67
3.2.1 The Physics of the Process of Electrical
Explosion of Wires ................................. 68
3.2.2 Nonequilibrium State of EEW Products - Nanometals .. 70
3.2.3 The Equipment Design for nMe Production by
Electrical Explosion of Wires Method ............... 71
3.2.4 Comparative Characteristics of the Technology of
Electrical Explosion of Wires ...................... 73
3.2.5 The Methods for the Regulation of the Properties
of Nanometals Produced by Electrical Explosion of
Wires .............................................. 74
3.3 Conclusion ................................................ 75
Acknowledgments ........................................... 75
References ................................................ 76
4 Metal Nanopowders Production .............................. 79
M. Lerner, A. Vorozhtsov, Sh. Guseinov, and
P. Storozhenko
4.1 Introduction .............................................. 79
4.2 EEW Method of Nanopowder Production ....................... 81
4.2.1 Electrical Explosion of Wires Phenomenon ........... 81
4.2.2 Nanopowder Production Equipment .................... 84
4.3 Recondensation NP-Producing Methods: Plasma-Based
Technology ................................................ 85
4.3.1 Fundamentals of Plasma-Chemical NP Production ...... 89
4.3.2 Vortex-Stabilized Plasma Reactor ................... 90
4.3.3 Starting Material Metering Device (Dispenser) ...... 92
4.3.4 Disperse Material Trapping Devices (Cyclone
Collectors and Filters) ............................ 93
4.3.5 NP Encapsulation Unit .............................. 94
4.4 Characteristics of Al Nanopowders ......................... 95
4.5 Nanopowder Chemical Passivation ........................... 97
4.6 Microencapsulation of Al Nanoparticles .................... 99
4.7 The Process of Producing Nanopowders of Aluminum by
Plasma-Based Technology .................................. 102
4.7.1 Production of Aluminum Nanopowder ................. 102
4.7.2 Some Properties of Produced Nanopowders of
Aluminum, Boron, Aluminum Boride, and Silicon ..... 103
References ............................................... 104
5 Characterization of Metallic Nanoparticle Agglomerates ... 107
Alfred P. Weber
5.1 Introduction ............................................. 107
5.2 Description of the Structure of Nanoparticle
Agglomerates ............................................. 108
5.3 Experimental Techniques to Characterize the Agglomerate
Structure ................................................ 112
5.3.1 ТЕМ and 3-D ТЕМ Tomography ........................ 113
5.3.2 Scattering Techniques ............................. 115
5.3.3 Direct Determination of Agglomerate Mass and
Size .............................................. 117
5.4 Mechanical Stability ..................................... 120
5.5 Thermal Stability ........................................ 124
5.6 Rate-Limiting Steps: Gas Transport versus Reaction
Velocity ................................................. 126
5.7 Conclusions .............................................. 127
Acknowledgments .......................................... 128
References ............................................... 128
6 Passivation of Metal Nanopowders ......................... 133
Alexander Gromov, Alexander Il'in, Ulrich Teipel, and
Julia Pautova
6.1 Introduction ............................................. 133
6.2 Theoretical and Experimental Background .................. 136
6.2.1 Chemical and Physical Processes in Aluminum
Nanoparticles during Their Passivation by Slow
Oxidation under Atmosphere (Ar + Air) ............. 136
6.2.2 Chemical Mechanism of Aluminum Nanopowder
Passivation by Slow Air Oxidation ................. 140
6.3 Characteristics of the Passivated Particles .............. 143
6.3.1 Characteristics of Aluminum Nanopowders,
Passivated by Gaseous and Solid Reagents
(Samples No 1-6, Table 6.7) ....................... 148
6.3.2 Characteristics of Aluminum Nanopowders,
Passivated by Gaseous and Solid Reagents
(Samples No 7-11, Table 6.7) ...................... 149
6.4 Conclusion ............................................... 150
Acknowledgments .......................................... 150
References ............................................... 150
7 Safety Aspects of Metal Nanopowders ...................... 153
M. Lerner, A. Vorozhtsov, and N. Eisenreich
7.1 Introduction ............................................. 153
7.2 Some Basic Phenomena of Oxidation of Nanometal
Particles in Air ......................................... 354
7.3 Determination of Fire Hazards of Nanopowders ............. 155
7.4 Sensitivity against Electrostatic Discharge .............. 158
7.5 Ranking of Nanopowders According to Hazard
Classification ........................................... 159
7.6 Demands for Packing ...................................... 160
References ............................................... 161
8 Reaction of Aluminum Powders with Liquid Water and
Steam .................................................... 163
Larichev Mikhail Nikolaevich
8.1 Introduction ............................................. 163
8.2 Experimental Technique for Studying Reaction Al Powders
with Liquid and Gaseous Water ............................ 166
8.2.1 Oxidation of Aluminum Powder with Distilled
Water ............................................. 168
8.3 Oxidation of Aluminum Powder in Water Vapor Flow ......... 174
8.4 Nanopowders Passivated with Coatings on the Base of
Aluminum Carbide ......................................... 175
8.5 Study of Al Powder/H20 Slurry Samples Heated Linear in
"Open System" by STA ..................................... 183
8.6 Ultrasound (US) and Chemical Activation of Metal
Aluminum Oxidation in Liquid Water ....................... 184
8.7 Conclusion ............................................... 194
Acknowledgments .......................................... 195
References ............................................... 195
9 Nanosized Cobalt Catalysts for Hydrogen Storage Systems
Based on Ammonia Borane and Sodium Borohydride ........... 199
Valentina I. Simagina, Oksana V. Komova, and Olga
V. Netskina
9.1 Introduction ............................................. 199
9.1.1 Experimental ...................................... 200
9.1.2 Study of the Activity of Nanosized Cobalt Boride
Catalysts Forming in the Reaction Medium of
Sodium Borohydride and Ammonia Borane ............. 202
9.2 A Study of Nanosized Cobalt Borides by Physicochemical
Methods .................................................. 204
9.2.1 A Study of the Crystallization of Amorphous
Cobalt Borides Forming in the Medium of Sodium
Borohydride and Ammonia Borane .................... 208
9.2.2 The Effect of the Reaction Medium on the State
of Cobalt Boride Catalysts ........................ 214
9.3 Conclusions .............................................. 223
Acknowledgments .......................................... 224
References ............................................... 224
10 Reactive and Metastable Nanomaterials Prepared by
Mechanical Milling ....................................... 227
Edward L. Dreizin and Mirko Schoenitz
10.1 Introduction ............................................. 227
10.2 Mechanical Milling Equipment ............................. 228
10.3 Process Parameters ....................................... 229
10.4 Material Characterization ................................ 232
10.5 Ignition and Combustion Experiments ...................... 233
10.6 Starting Materials ....................................... 235
10.7 Mechanically Alloyed and Metal-Metal Composite Powders ... 236
10.7.1 Preparation and Characterization .................. 236
10.7.2 Thermal Analysis .................................. 242
10.7.3 Heated Filament Ignition .......................... 245
10.7.4 Constant Volume Explosion ......................... 249
10.7.5 Lifted Laminar Flame (LLF) Experiments ............ 250
10.8 Reactive Nanocomposite Powders ........................... 254
10.8.1 Preparation and Characterization .................. 256
10.8.2 Thermally Activated Reactions and their
Mechanisms ........................................ 257
10.8.3 Ignition .......................................... 263
10.8.4 Particle Combustion Dynamics ...................... 267
10.8.5 Constant Volume Explosion ......................... 268
10.8.6 Consolidated Samples: Mechanical and Reactive
Properties ........................................ 271
10.9 Conclusions .............................................. 273
References ............................................... 274
11 Characterizing Metal Particle Combustion In Situ:
Non-equilibrium Diagnostics .............................. 279
Michelle Pantoya, Keerti Kappagantula, and Cory Farley
11.1 Introduction ............................................. 279
11.2 Ignition and Combustion of Solid Materials ............... 281
11.2.1 Ignition .......................................... 281
11.2.2 Propagation ....................................... 282
11.2.3 Flame Speeds ...................................... 286
11.3 Aluminum Reaction Mechanisms ............................. 287
11.4 The Flame Tube ........................................... 289
11.5 Flame Temperature ........................................ 292
11.5.1 Background ........................................ 292
11.5.2 Radiometer Setup .................................. 294
11.5.3 Infrared Setup .................................... 295
11.5.4 Linking Radiometer and IR Data for a Spatial
Distribution of Temperature ....................... 295
11.6 Conclusions .............................................. 297
Acknowledgments .......................................... 297
References ............................................... 297
12 Characterization and Combustion of Aluminum Nanopowders
in Energetic Systems ..................................... 301
Luigi T. De Luca, Luciano Galfetti, Filippo Maggi,
Giovanni Colombo, Christian Paravan, Alice Reina,
Stefano Dossi, Marco Fassina, and Andrea Sossi
12.1 Fuels in Energetic Systems: Introduction and
Literature Survey ........................................ 301
12.1.1 An Overall Introduction to Energetic Systems ...... 302
12.1.2 Experimental Investigations on Micro and Nano
Energetic Additives ............................... 304
12.1.3 Theoretical/Numerical Investigations on
Energetic Additives ............................... 305
12.1.4 Thermites ......................................... 308
12.1.4.1 Nanocomposite Thermites .................. 308
12.1.5 Explosives ........................................ 311
12.1.6 A Short Historical Survey of SPLab Contributions .. 315
12.1.7 Concluding Remarks on Energetic Additives ......... 339
12.2 Thermochemical Performance of Energetic Additives ........ 339
12.2.1 Ideal Performance Analysis of Metal Fuels ......... 319
12.2.2 Solid Propellant Optimal Formulations ............. 320
12.2.3 Hybrid Rocket Performance Analysis ................ 322
12.2.4 Oxidizing Species in Hybrid Rocket Nozzles ........ 324
12.2.5 Active Aluminum Content and Performance
Detriment ......................................... 325
12.2.6 Two-Phase Losses .................................. 326
12.2.7 Concluding Remarks on Theoretical Performance ..... 329
12.3 Nanosized Powder Characterization ........................ 330
12.3.1 Introduction ...................................... 330
12.3.2 Facilities Used for Nanosized Powder Analyses ..... 331
12.3.3 Tested nAl Powders: Production, Coating, and
Properties ........................................ 333
12.3.3.1 Production of nAl Particles .............. 331
12.3.3.2 Coating of nAl Particles ................. 332
12.3.3.3 Morphology and Internal Structure of
nAl Particles ............................ 333
12.3.3.4 BET Area and Aluminum Content of nAl
Particles ................................ 333
12.3.4 DSC/TGA Slow Heating Rate Reactivity .............. 337
12.3.4.1 Nonisothermal Oxidation of 50 nm Powder .. 338
12.3.4.2 Nonisothermal Oxidation of 100 nm
Powder ................................... 339
12.3.4.3 Passivation/Coating Efficiency ........... 339
12.3.5 High Heating Rate Reactivity ...................... 341
12.3.5.1 nAl Powder Ignition Experimental Setup ... 343
12.3.5.2 nAl Powder Ignition Representative
Results .................................. 342
12.3.6 CCP Collection by Strand Burner ................... 344
12.3.6.1 Condensed Combustion Product Analysis .... 344
12.3.7 Concluding Remarks on Powder Characterization ..... 350
12.4 Mechanical and Rheological Behavior with Nanopowders ..... 350
12.4.1 Solid Propellants and Fuels: Mechanical and
Rheological Behavior .............................. 350
12.4.2 Viscoelastic Behavior ............................. 352
12.4.3 Additive Dispersion ............................... 354
12.4.4 Rheology of Suspensions ........................... 355
12.4.5 Aging Effects ..................................... 359
12.4.6 Experimental Results: Data Processing and
Discussions ....................................... 360
12.4.7 Tested Formulations ............................... 361
12.4.8 Uniaxial Tensile Stress-Strain Tests .............. 362
12.4.9 Dynamic Mechanical Analysis ....................... 364
12.4.10 Rheological Tests ................................ 365
12.4.11 Concluding Remarks ............................... 367
12.5 Combustion of Nanopowders in Solid Propellants and
Fuels .................................................... 367
12.5.1 Solid Rocket Propellants .......................... 368
12.5.1.1 Particle Clustering Phenomena ............ 368
12.5.1.2 Propellant Volume Microstructure ......... 369
12.5.1.3 Steady Combustion Mechanisms of
AP/HTPB-Based Composite Propellants ...... 370
12.5.1.4 Transient Combustion Mechanisms .......... 374
12.5.1.5 Concluding Remarks ....................... 379
12.5.2 Solid Rocket Fuels for Hybrid Propulsion .......... 380
12.5.2.1 Tested Ingredients and Solid Fuel
Formulations ............................. 380
12.5.2.2 Experimental Setup ....................... 381
12.5.2.3 Time-Resolved Regression Rate ............ 383
12.5.2.4 Ballistic Characterization: Analyses of
the Results .............................. 386
12.5.2.5 Concluding Remarks on Solid Fuel
Burning .................................. 394
12.5.3 Chapter Summary ................................... 395
Nomenclature ............................................. 396
References ............................................... 400
Index ......................................................... 411
|