Metal nanopowders. Production, characterization, and energetic applications (Weinheim, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMetal nanopowders. Production, characterization, and energetic applications / eds.: A.A.Gromov, U.Teipel. - Weinheim: Wiley-VCH, 2014. - xxi, 417 p.: ill. - Bibliogr. at the end of the chapters. - Ind.: p.411-417. - ISBN 978-3-527-33361-5
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Foreword ..................................................... ХIII
List of Contributors ........................................... XV
Introduction .................................................. XIX

1    Estimation of Thermodynamic Data of Metallic
     Nanoparticles Based on Bulk Values ......................... 1
     Dieter Vollath and Franz Dieter Fischer
1.1  Introduction ............................................... 1
1.2  Thermodynamic Background ................................... 2
1.3  Size-Dependent Materials Data of Nanoparticles ............. 4
1.4  Comparison of Experimental and Calculated Melting
     Temperatures ............................................... 8
1.5  Comparison with Data for the Entropy of Melting ........... 16
1.6  Discussion of the Results ................................. 17
1.7  Conclusions ............................................... 19
     Appendix: Zeros and Extrema of the Free Enthalpy of 
     Melting Gm-nano ............................................ 20
     References ................................................ 21

2    Numerical Simulation of Individual Metallic
     Nanoparticles ............................................. 25
     D.S. Wen and P.X. Song
2.1  Introduction .............................................. 25
2.2  Molecular Dynamics Simulation ............................. 27
     2.2.1  Motion of Atoms .................................... 27
     2.2.2  Temperature and Potential Energy ................... 28
     2.2.3  Ensembles .......................................... 29
     2.2.4  Energy Minimization ................................ 30
     2.2.5  Force Field ........................................ 30
     2.2.6  Potential Truncation and Neighbor List ............. 31
     2.2.7  Simulation Program and Platform .................... 32
2.3  Size-Dependent Properties ................................. 33
     2.3.1  Introduction ....................................... 33
     2.3.2  Simulation Setting ................................. 34
     2.3.3  Size-Dependent Melting Phenomenon .................. 35
2.4  Sintering Study of Two Nanoparticles ...................... 38
     2.4.1  Introduction ....................................... 38
     2.4.2  Simulation Setting ................................. 40
     2.4.3  Sintering Process Characterization ................. 40
2.5  Oxidation of Nanoparticles in the Presence of Oxygen ...... 45
     2.5.1  Introduction ....................................... 45
     2.5.2  Simulation Setting ................................. 47
     2.5.3  Characterization of the Oxidation Process .......... 48
2.6  Heating and Cooling of a Core-Shell Structured Particle ... 54
     2.6.1  Simulation Method .................................. 54
     2.6.2  Heating Simulation ................................. 56
            2.6.2.1  Solidification Simulation ................. 59
2.7  Chapter Summary ........................................... 61
     References ................................................ 63

3    Electroexplosive Nanometals ............................... 67
     Olga Nazarenko, Alexander Gromov, Alexander Il'in, Julia
     Pautova, and Dmitry Tikhonov
3.1  Introduction .............................................. 67
3.2  Electrical Explosion of Wires Technology for Nanometals
     Production ................................................ 67
     3.2.1  The Physics of the Process of Electrical
            Explosion of Wires ................................. 68
     3.2.2  Nonequilibrium State of EEW Products - Nanometals .. 70
     3.2.3  The Equipment Design for nMe Production by
            Electrical Explosion of Wires Method ............... 71
     3.2.4  Comparative Characteristics of the Technology of
            Electrical Explosion of Wires ...................... 73
     3.2.5  The Methods for the Regulation of the Properties
            of Nanometals Produced by Electrical Explosion of
            Wires .............................................. 74
3.3  Conclusion ................................................ 75
     Acknowledgments ........................................... 75
     References ................................................ 76

4    Metal Nanopowders Production .............................. 79
     M. Lerner, A. Vorozhtsov, Sh. Guseinov, and
     P. Storozhenko
4.1  Introduction .............................................. 79
4.2  EEW Method of Nanopowder Production ....................... 81
     4.2.1  Electrical Explosion of Wires Phenomenon ........... 81
     4.2.2  Nanopowder Production Equipment .................... 84
4.3  Recondensation NP-Producing Methods: Plasma-Based
     Technology ................................................ 85
     4.3.1  Fundamentals of Plasma-Chemical NP Production ...... 89
     4.3.2  Vortex-Stabilized Plasma Reactor ................... 90
     4.3.3  Starting Material Metering Device (Dispenser) ...... 92
     4.3.4  Disperse Material Trapping Devices (Cyclone
            Collectors and Filters) ............................ 93
     4.3.5  NP Encapsulation Unit .............................. 94
4.4  Characteristics of Al Nanopowders ......................... 95
4.5  Nanopowder Chemical Passivation ........................... 97
4.6  Microencapsulation of Al Nanoparticles .................... 99
4.7  The Process of Producing Nanopowders of Aluminum by
     Plasma-Based Technology .................................. 102
     4.7.1  Production of Aluminum Nanopowder ................. 102
     4.7.2  Some Properties of Produced Nanopowders of
            Aluminum, Boron, Aluminum Boride, and Silicon ..... 103
     References ............................................... 104

5    Characterization of Metallic Nanoparticle Agglomerates ... 107
     Alfred P. Weber
5.1  Introduction ............................................. 107
5.2  Description of the Structure of Nanoparticle
     Agglomerates ............................................. 108
5.3  Experimental Techniques to Characterize the Agglomerate
     Structure ................................................ 112
     5.3.1  ТЕМ and 3-D ТЕМ Tomography ........................ 113
     5.3.2  Scattering Techniques ............................. 115
     5.3.3  Direct Determination of Agglomerate Mass and
            Size .............................................. 117
5.4  Mechanical Stability ..................................... 120
5.5  Thermal Stability ........................................ 124
5.6  Rate-Limiting Steps: Gas Transport versus Reaction
     Velocity ................................................. 126
5.7  Conclusions .............................................. 127
     Acknowledgments .......................................... 128
     References ............................................... 128

6    Passivation of Metal Nanopowders ......................... 133
     Alexander Gromov, Alexander Il'in, Ulrich Teipel, and
     Julia Pautova
6.1  Introduction ............................................. 133
6.2  Theoretical and Experimental Background .................. 136
     6.2.1  Chemical and Physical Processes in Aluminum
            Nanoparticles during Their Passivation by Slow
            Oxidation under Atmosphere (Ar + Air) ............. 136
     6.2.2  Chemical Mechanism of Aluminum Nanopowder
            Passivation by Slow Air Oxidation ................. 140
6.3  Characteristics of the Passivated Particles .............. 143
     6.3.1  Characteristics of Aluminum Nanopowders,
            Passivated by Gaseous and Solid Reagents
            (Samples No 1-6, Table 6.7) ....................... 148
     6.3.2  Characteristics of Aluminum Nanopowders,
            Passivated by Gaseous and Solid Reagents
            (Samples No 7-11, Table 6.7) ...................... 149
6.4  Conclusion ............................................... 150
     Acknowledgments .......................................... 150
     References ............................................... 150

7    Safety Aspects of Metal Nanopowders ...................... 153
     M. Lerner, A. Vorozhtsov, and N. Eisenreich
7.1  Introduction ............................................. 153
7.2  Some Basic Phenomena of Oxidation of Nanometal
     Particles in Air ......................................... 354
7.3  Determination of Fire Hazards of Nanopowders ............. 155
7.4  Sensitivity against Electrostatic Discharge .............. 158
7.5  Ranking of Nanopowders According to Hazard
     Classification ........................................... 159
7.6  Demands for Packing ...................................... 160
     References ............................................... 161

8    Reaction of Aluminum Powders with Liquid Water and
     Steam .................................................... 163
     Larichev Mikhail Nikolaevich
8.1  Introduction ............................................. 163
8.2  Experimental Technique for Studying Reaction Al Powders
     with Liquid and Gaseous Water ............................ 166
     8.2.1  Oxidation of Aluminum Powder with Distilled
            Water ............................................. 168
8.3  Oxidation of Aluminum Powder in Water Vapor Flow ......... 174
8.4  Nanopowders Passivated with Coatings on the Base of
     Aluminum Carbide ......................................... 175
8.5  Study of Al Powder/H20 Slurry Samples Heated Linear in
     "Open System" by STA ..................................... 183
8.6  Ultrasound (US) and Chemical Activation of Metal
     Aluminum Oxidation in Liquid Water ....................... 184
8.7  Conclusion ............................................... 194
     Acknowledgments .......................................... 195
     References ............................................... 195

9    Nanosized Cobalt Catalysts for Hydrogen Storage Systems
     Based on Ammonia Borane and Sodium Borohydride ........... 199
     Valentina I. Simagina, Oksana V. Komova, and Olga
     V. Netskina
9.1  Introduction ............................................. 199
     9.1.1  Experimental ...................................... 200
     9.1.2  Study of the Activity of Nanosized Cobalt Boride
            Catalysts Forming in the Reaction Medium of
            Sodium Borohydride and Ammonia Borane ............. 202
9.2  A Study of Nanosized Cobalt Borides by Physicochemical
     Methods .................................................. 204
     9.2.1  A Study of the Crystallization of Amorphous
            Cobalt Borides Forming in the Medium of Sodium
            Borohydride and Ammonia Borane .................... 208
     9.2.2  The Effect of the Reaction Medium on the State
            of Cobalt Boride Catalysts ........................ 214
9.3  Conclusions .............................................. 223
     Acknowledgments .......................................... 224
     References ............................................... 224

10   Reactive and Metastable Nanomaterials Prepared by
     Mechanical Milling ....................................... 227
     Edward L. Dreizin and Mirko Schoenitz
10.1 Introduction ............................................. 227
10.2 Mechanical Milling Equipment ............................. 228
10.3 Process Parameters ....................................... 229
10.4 Material Characterization ................................ 232
10.5 Ignition and Combustion Experiments ...................... 233
10.6 Starting Materials ....................................... 235
10.7 Mechanically Alloyed and Metal-Metal Composite Powders ... 236
     10.7.1 Preparation and Characterization .................. 236
     10.7.2 Thermal Analysis .................................. 242
     10.7.3 Heated Filament Ignition .......................... 245
     10.7.4 Constant Volume Explosion ......................... 249
     10.7.5 Lifted Laminar Flame (LLF) Experiments ............ 250
10.8 Reactive Nanocomposite Powders ........................... 254
     10.8.1 Preparation and Characterization .................. 256
     10.8.2 Thermally Activated Reactions and their
            Mechanisms ........................................ 257
     10.8.3 Ignition .......................................... 263
     10.8.4 Particle Combustion Dynamics ...................... 267
     10.8.5 Constant Volume Explosion ......................... 268
     10.8.6 Consolidated Samples: Mechanical and Reactive
            Properties ........................................ 271
10.9 Conclusions .............................................. 273
     References ............................................... 274

11   Characterizing Metal Particle Combustion In Situ:
     Non-equilibrium Diagnostics .............................. 279
     Michelle Pantoya, Keerti Kappagantula, and Cory Farley
11.1 Introduction ............................................. 279
11.2 Ignition and Combustion of Solid Materials ............... 281
     11.2.1 Ignition .......................................... 281
     11.2.2 Propagation ....................................... 282
     11.2.3 Flame Speeds ...................................... 286
11.3 Aluminum Reaction Mechanisms ............................. 287
11.4 The Flame Tube ........................................... 289
11.5 Flame Temperature ........................................ 292
     11.5.1 Background ........................................ 292
     11.5.2 Radiometer Setup .................................. 294
     11.5.3 Infrared Setup .................................... 295
     11.5.4 Linking Radiometer and IR Data for a Spatial
            Distribution of Temperature ....................... 295
11.6 Conclusions .............................................. 297
     Acknowledgments .......................................... 297
     References ............................................... 297

12   Characterization and Combustion of Aluminum Nanopowders
     in Energetic Systems ..................................... 301
     Luigi T. De Luca, Luciano Galfetti, Filippo Maggi,
     Giovanni Colombo, Christian Paravan, Alice Reina,
     Stefano Dossi, Marco Fassina, and Andrea Sossi
12.1 Fuels in Energetic Systems: Introduction and
     Literature Survey ........................................ 301
     12.1.1 An Overall Introduction to Energetic Systems ...... 302
     12.1.2 Experimental Investigations on Micro and Nano
            Energetic Additives ............................... 304
     12.1.3 Theoretical/Numerical Investigations on
            Energetic Additives ............................... 305
     12.1.4 Thermites ......................................... 308
            12.1.4.1 Nanocomposite Thermites .................. 308
     12.1.5 Explosives ........................................ 311
     12.1.6 A Short Historical Survey of SPLab Contributions .. 315
     12.1.7 Concluding Remarks on Energetic Additives ......... 339
12.2 Thermochemical Performance of Energetic Additives ........ 339
     12.2.1 Ideal Performance Analysis of Metal Fuels ......... 319
     12.2.2 Solid Propellant Optimal Formulations ............. 320
     12.2.3 Hybrid Rocket Performance Analysis ................ 322
     12.2.4 Oxidizing Species in Hybrid Rocket Nozzles ........ 324
     12.2.5 Active Aluminum Content and Performance
            Detriment ......................................... 325
     12.2.6 Two-Phase Losses .................................. 326
     12.2.7 Concluding Remarks on Theoretical Performance ..... 329
12.3 Nanosized Powder Characterization ........................ 330
     12.3.1 Introduction ...................................... 330
     12.3.2 Facilities Used for Nanosized Powder Analyses ..... 331
     12.3.3 Tested nAl Powders: Production, Coating, and
            Properties ........................................ 333
            12.3.3.1 Production of nAl Particles .............. 331
            12.3.3.2 Coating of nAl Particles ................. 332
            12.3.3.3 Morphology and Internal Structure of
                     nAl Particles ............................ 333
            12.3.3.4 BET Area and Aluminum Content of nAl
                     Particles ................................ 333
     12.3.4 DSC/TGA Slow Heating Rate Reactivity .............. 337
            12.3.4.1 Nonisothermal Oxidation of 50 nm Powder .. 338
            12.3.4.2 Nonisothermal Oxidation of 100 nm
                     Powder ................................... 339
            12.3.4.3 Passivation/Coating Efficiency ........... 339
     12.3.5 High Heating Rate Reactivity ...................... 341
            12.3.5.1 nAl Powder Ignition Experimental Setup ... 343
            12.3.5.2 nAl Powder Ignition Representative
                     Results .................................. 342
     12.3.6 CCP Collection by Strand Burner ................... 344
            12.3.6.1 Condensed Combustion Product Analysis .... 344
     12.3.7 Concluding Remarks on Powder Characterization ..... 350
12.4 Mechanical and Rheological Behavior with Nanopowders ..... 350
     12.4.1 Solid Propellants and Fuels: Mechanical and
            Rheological Behavior .............................. 350
     12.4.2 Viscoelastic Behavior ............................. 352
     12.4.3 Additive Dispersion ............................... 354
     12.4.4 Rheology of Suspensions ........................... 355
     12.4.5 Aging Effects ..................................... 359
     12.4.6 Experimental Results: Data Processing and
            Discussions ....................................... 360
     12.4.7 Tested Formulations ............................... 361
     12.4.8 Uniaxial Tensile Stress-Strain Tests .............. 362
     12.4.9 Dynamic Mechanical Analysis ....................... 364
     12.4.10 Rheological Tests ................................ 365
     12.4.11 Concluding Remarks ............................... 367
12.5 Combustion of Nanopowders in Solid Propellants and
     Fuels .................................................... 367
     12.5.1 Solid Rocket Propellants .......................... 368
            12.5.1.1 Particle Clustering Phenomena ............ 368
            12.5.1.2 Propellant Volume Microstructure ......... 369
            12.5.1.3 Steady Combustion Mechanisms of
                     AP/HTPB-Based Composite Propellants ...... 370
            12.5.1.4 Transient Combustion Mechanisms .......... 374
            12.5.1.5 Concluding Remarks ....................... 379
     12.5.2 Solid Rocket Fuels for Hybrid Propulsion .......... 380
            12.5.2.1 Tested Ingredients and Solid Fuel
                     Formulations ............................. 380
            12.5.2.2 Experimental Setup ....................... 381
            12.5.2.3 Time-Resolved Regression Rate ............ 383
            12.5.2.4 Ballistic Characterization: Analyses of
                     the Results .............................. 386
            12.5.2.5 Concluding Remarks on Solid Fuel
                     Burning .................................. 394
     12.5.3 Chapter Summary ................................... 395
     Nomenclature ............................................. 396
     References ............................................... 400

Index ......................................................... 411


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:36 2019. Размер: 23,751 bytes.
Посещение N 2064 c 02.06.2015