Casas-Alvero E. Analytic projective geometry (Zurich, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCasas-Alvero E. Analytic projective geometry. - Zürich: European mathematical society, 2014. - xvi, 620 p.: ill. - (EMS textbooks in mathematics). - Bibliogr.: p.603-604. - Ind.: p.607-620. - ISBN 978-3-03719-138-5
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Introduction ................................................... xi
General conventions ............................................ xv
1  Projective spaces and linear varieties ....................... 1
   1.1  How projective spaces arise ............................. 1
   1.2  Projective spaces ....................................... 5
   1.3  Linear varieties ........................................ 7
   1.4  Incidence of linear varieties ........................... 9
   1.5  Linear independence of points .......................... 13
   1.6  Projectivities ......................................... 16
   1.7  Projective invariance .................................. 18
   1.8  Pappus' and Desargues' theorems ........................ 21
   1.9  Projection, section and perspectivity .................. 25
   1.10 What is projective geometry about? ..................... 28
   1.11 Exercises .............................................. 30
2  Projective coordinates and cross ratio ...................... 34
   2.1  Projective references .................................. 34
   2.2  Projective coordinates ................................. 36
   2.3  Change of coordinates .................................. 39
   2.4  Absolute coordinate .................................... 41
   2.5  Parametric equations ................................... 43
   2.6  Implicit equations ..................................... 45
   2.7  Incidence with coordinates ............................. 47
   2.8  Determination and matrices of a projectivity ........... 52
   2.9  Cross ratio ............................................ 56
   2.10 Harmonic sets .......................................... 62
   2.11 Projective classification .............................. 66
   2.12 Exercises .............................................. 67
3  Affine geometry ............................................. 72
   3.1  Recalling basic facts of affine geometry ............... 72
   3.2  The projective closure of an affine space .............. 75
   3.3  Affine and projective coordinates ...................... 78
   3.4  Affine linear varieties ................................ 81
   3.5  Affine transformations, affine ratio ................... 85
   3.6  Affine geometry in the projective frame ................ 89
   3.7  The Erlangen Program ................................... 94
   3.8  Exercises .............................................. 96
4  Duality .................................................... 100
   4.1  The space of hyperplanes .............................. 100
   4.2  Bundles of hyperplanes ................................ 101
   4.3  The principle of duality .............................. 106
   4.4  Hyperplane coordinates ................................ 111
   4.5  The dual of a projectivity ............................ 117
   4.6  Biduality ............................................. 119
   4.7  Duals of linear varieties and bunches ................. 121
   4.8  Exercises ............................................. 122
5  Projective transformations ................................. 124
   5.1  Complex extension of a real projective space .......... 124
   5.2  Equations of projectivities between lines ............. 136
   5.3  Projectivities between distinct lines ................. 137
   5.4  Pairs of points on projective lines ................... 143
   5.5  Projectivities of a line .............................. 145
   5.6  Involutions ........................................... 153
   5.7  Fixed points of collineations ......................... 160
   5.8  Correlations .......................................... 173
   5.9  Projectivities and perspectivities .................... 180
   5.10 Singular projectivities ............................... 182
   5.11 Exercises ............................................. 187
6  Quadric hypersurfaces ...................................... 193
   6.1  The notion of quadric ................................. 193
   6.2  Quadrics of Pi ........................................ 203
   6.3  Tangent lines ......................................... 204
   6.4  Conjugation ........................................... 207
   6.5  Non-degenerate quadrics. Polarity ..................... 218
   6.6  Non-degenerate quadric envelopes ...................... 224
   6.7  Degenerate quadrics. Cones ............................ 227
   6.8  Degenerate quadric envelopes .......................... 234
   6.9  The absolute quadric .................................. 238
   6.10 Exercises ............................................. 249
7  Classification and properties of quadrics .................. 256
   7.1  Projective reduced equations of quadrics .............. 256
   7.2  Projective classification of quadrics ................. 260
   7.3  Determining quadrics by their sets of points .......... 268
   7.4  Interior and exterior of quadrics ..................... 272
   7.5  Quadrics of affine spaces ............................. 277
   7.6  Affine reduced equations of quadrics .................. 280
   7.7  Affine classification of quadrics ..................... 284
   7.8  Affine elements of quadrics ........................... 295
   7.9  Exercises ............................................. 302
8  Further properties of quadrics ............................. 309
   8.1  Projective generation of conies ....................... 309
   8.2  Projective structure on a conic ....................... 315
   8.3  Lines on quadrics ..................................... 328
   8.4  Lines of P3 ........................................... 339
   8.5  Exercises ............................................. 347
9  Projective spaces of quadrics .............................. 356
   9.1  Effective divisors on projective lines ................ 356
   9.2  Rational curves ....................................... 360
   9.3  Linear systems of quadrics ............................ 365
   9.4  Independence of linear conditions on quadrics ......... 372
   9.5  Pencils of quadrics ................................... 375
   9.6  Pencils of conies ..................................... 385
   9.7  Desargues' theorem on pencils of quadrics ............. 390
   9.8  Spaces of quadric envelopes, ranges ................... 392
   9.9  Apolarity ............................................. 397
   9.10 Pencils and polarity .................................. 399
   9.11 Rational normal curves of fig.2n ......................... 404
   9.12 Twisted cubics ........................................ 420
   9.13 Exercises ............................................. 427
10  Metric geometry of quadrics ............................... 438
   10.1  Circles and spheres .................................. 438
   10.2  Metric properties of conies .......................... 442
   10.3  Focal properties of conies ........................... 447
   10.4  Metric properties of three-space quadrics ............ 457
   10.5  Metric reduced equations of quadrics ................. 467
   10.6  Metric invariants of quadrics ........................ 474
   10.7  Metric classification of quadrics .................... 483
   10.8  Exercises ............................................ 486
11 Three projective classifications ........................... 493
   11.1 Polynomial matrices ................................... 493
   11.2 Classification of polynomial matrices ................. 498
   11.3 Projective equivalence of collineations ............... 505
   11.4 Classification of collineations of complex
        projective spaces ..................................... 508
   11.5 Classification of collineations of real projective
        spaces ................................................ 515
   11.6 Projective classification of pencils of quadrics ...... 520
   11.7 Projective classification of correlations ............. 538
   11.8 Square roots of regular matrices ...................... 548
   11.9 Exercises ............................................. 550
A  Perspective (for artists) .................................. 553
   A.1  Basic setting and affine matter ....................... 554
   A.2  Orthogonality and angles .............................. 558
   A.3  Exercises ............................................. 565
В  Models of non-Euclidean geometries ......................... 568
   B.l  Euclidean and non-Euclidean geometries ................ 568
   B.2  The models ............................................ 571
   B.3  Hyperbolic distance ................................... 575
   B.4  Elliptic distance ..................................... 579
   B.5  Betweenness ........................................... 582
   B.6  Angles between lines .................................. 583
   B.7  Circles and similar curves ............................ 588
   B.8  Transformations ....................................... 593
   B.9  Exercises ............................................. 599
Bibliography .................................................. 603
Symbols ....................................................... 605
Index ......................................................... 607


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:20 2019. Размер: 13,053 bytes.
Посещение N 1868 c 10.03.2015