Branner B. Quasiconformal surgery in holomorphic dynamics (Cambridge; New York, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBranner B. Quasiconformal surgery in holomorphic dynamics / B.Branner, N.Fagella; with contributions by X.Buff et al. - Cambridge; New York: Cambridge univ. press, 2014. - xvii, 413 p.: ill. - (Cambridge studies in advanced mathematics; 141). - Bibliogr.: p.400-407. - Ind.: p.408-413. - ISBN 978-1-107-04291-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
   List of contributors ........................................ ix
   Preface ..................................................... xi
   Acknowledgements .......................................... xiii
   List of symbols ............................................. xv
   Introduction ................................................. 1
1  Quasiconformal geometry ...................................... 7
   1.1  The linear case: Beltrami coefficients and ellipses ..... 7
   1.2  Almost complex structures and pullbacks ................ 14
   1.3  Quasiconformal mappings ................................ 20
   1.4  The Integrability Theorem .............................. 39
   1.5  An elementary example .................................. 49
   1.6  Quasiregular mappings .................................. 55
   1.7  Application to holomorphic dynamics .................... 60
2  Boundary behaviour of quasiconformal maps: extensions and
   interpolations .............................................. 64
   2.1  Preliminaries: quasisymmetric maps and quasicircles .... 65
   2.2  Extensions of mappings from their domains to their
        boundaries ............................................. 69
   2.3  Extensions of boundary maps ............................ 77
3  Preliminaries on dynamical systems and actions of Kleinian
   groups ...................................................... 92
   3.1  Conjugacies and equivalences ........................... 94
   3.2  Circle homeomorphisms and rotation numbers ............. 97
   3.3  Holomorphic dynamics: the phase space ................. 105
   3.4  Families of holomorphic dynamics: parameter spaces .... 126
   3.5  Actions of Kleinian groups and the Sullivan
        dictionary ............................................ 133
4  Introduction to surgery and first occurrences .............. 147
   4.1  Changing the multiplier of an attracting cycle ........ 151
   4.2  Changing superattracting cycles to attracting ones .... 162
   4.3  No wandering domains for rational maps ................ 169
5  General principles of surgery .............................. 179
   5.1  Shishikura principles ................................. 180
   5.2  Sullivan's Straightening Theorem ...................... 184
   5.3  Non-rational maps ..................................... 186
6  Soft surgeries ............................................. 188
   6.1  Deformation of rotation rings
        Xavier Buff and Christian Henriksen ................... 189
   6.2  Branner-Hubbard motion ................................ 207
7  Cut and paste surgeries .................................... 218
   7.1  Polynomial-like mappings and the Straightening
        Theorem ............................................... 219
   7.2  Gluing Siegel discs along invariant curves ............ 224
   7.3  Turning Siegel discs into Herman rings ................ 235
   7.4  Simultaneous uniformization of Blaschke products ...... 244
   7.5  Gluing along continua in the Julia set ................ 248
   7.6  Disc-annulus surgery on rational maps
        Kevin M. Pilgrim and Tan Lei .......................... 267
   7.7  Perturbation and counting of non-repelling cycles ..... 282
   7.8  Mating a group with a polynomial
        Shaun Bullett ......................................... 291
8  Cut and paste surgeries with sectors ....................... 307
   8.1  Preliminaries: sectors and opening modulus ............ 308
   8.2  Creating new critical points .......................... 320
   8.3  Embedding limbs of M into other limbs ................. 337
   8.4  Intertwining surgery
        Adam Epstein and Michael Yampolsky .................... 343
9  Trans-quasiconformal surgery ............................... 364
   9.1  David maps and David-Beltrami differentials ........... 365
   9.2  Siegel discs via trans-quasiconformal surgery
        Carsten Lunde Petersen ................................ 370
   9.3  Turning hyperbolics into parabolics
        Peter Haïssinsky ...................................... 385
   References ................................................. 400
   Index ...................................................... 408


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:12 2019. Размер: 8,086 bytes.
Посещение N 1074 c 23.12.2014