Forschungsbericht; 2014-25 (Koln, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаEichinger R. Investigation of stratospheric water vapour by means of the simulation of water isotopologues: diss. / Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen. - Köln: DLR, 2014. - xii, 137 p.: ill. - (Forschungsbericht; 2014-25). - Bibliogr.: p.109-120. - ISSN 1434-8454
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Abstract ....................................................... xi
1  Introduction ................................................. 1
   1.1  Motivation .............................................. 1
   1.2  The potential of water isotopologues .................... 2
   1.3  Science questions and strategy .......................... 4
2  Theoretical Background ....................................... 7
   2.1  Water vapour in the stratosphere ........................ 7
        2.1.1  Pathways of water vapour into the stratosphere ... 8
        2.1.2  The chemical generation of water vapour ......... 11
        2.1.3  Stratospheric water vapour and its climate
               effect .......................................... 12
   2.2  Water isotopologues in the Earth's hydrological cycle .. 15
        2.2.1  Forms, abundances and notation .................. 16
        2.2.2  Isotope fractionation ........................... 17
        2.2.3  Physical isotope processes in the hydrological
               cycle ........................................... 21
        2.2.4  Chemical isotope fractionation in methane-
               oxidation ....................................... 24
        2.2.5  Atmospheric processes derived from isotope
               ratios in precipitation ......................... 25
3  New EMAC model developments ................................. 27
   3.1  The EMAC model system .................................. 27
        3.1.1  The general circulation model ECHAM5 ............ 27
        3.1.2  The submodel-coupling interface structure
               MESSy ........................................... 27
   3.2  The TENDENCY submodel - preparatory work ............... 28
        3.2.1  Implementation .................................. 30
        3.2.2  Diagnostic methods with TENDENCY ................ 35
        3.2.3  Runtime performance analysis .................... 37
        3.2.4  Process analysis of stratospheric water vapour .. 38
   3.3  The H2OISO submodel for stable water isotopologues ..... 41
        3.3.1  A second hydrological cycle including water
               isotopologues ................................... 43
        3.3.2  Vertical diffusion .............................. 43
        3.3.3  Surface processes ............................... 45
        3.3.4  Advection ....................................... 46
        3.3.5  Clouds - large-scale and convective ............. 46
        3.3.6  Methane oxidation ............................... 48
   3.4  Setup of the model simulations ......................... 51
        3.4.1  The T31L39MA simulation (FREE_VAL) setup ........ 51
        3.4.2  The T42L90MA simulation (SD_REF) setup .......... 52
4  Evaluation of the H20ISO submodel ........................... 53
   4.1  Correctness of the second hydrological cycle ........... 53
        4.1.1  Correctness of individual processes and the
               numerical error ................................. 53
        4.1.2  Analysis of the numerical error ................. 54
   4.2  Evaluation of tropospheric isotope quantities .......... 55
        4.2.1  Comparison with GNIP data ....................... 56
        4.2.2  Comparison with the ECHAM5-wiso model ........... 61
        4.2.3  Discussion of the model results in the
               troposphere ..................................... 64
   4.3  Evaluation of stratospheric isotope quantities ......... 64
        4.3.1  Comparison of δD(CH4) with the CHEM2D model ..... 65
        4.3.2  Comparison of δD(CH4) with balloon-borne
               observations .................................... 66
        4.3.3  Comparison of HDO with in situ observations ..... 69
        4.3.4  Comparison of HDO and δD(H2O) with satellite
               observations .................................... 70
        4.3.5  Discussion of the model results in the
               stratosphere .................................... 77
5  Analysis of stratospheric water isotope ratios .............. 81
   5.1  Time series of stratospheric δD(H2O) ................... 81
   5.2  The impact of methane oxidation on δD(H2O) ............. 83
   5.3  The origin of the δD(H2O) tape recorder ................ 88
   5.4  The impact of ice lofting on stratospheric δD(H2O) ..... 95
   5.5  Discussion of the analysis ............................. 98
6  Conclusions and Outlook .................................... 101
   6.1  Summary ............................................... 101
   6.2  Conclusions ........................................... 106
   Bibliography ............................................... 109
A  Abbreviations .............................................. 127
В  MESSy TENDENCY user manual ................................. 129
   B.l Introduction ........................................... 129
   B.2 Subroutines called from BMIL ........................... 129
   B.3 Subroutines and functions called from SMIL ............. 130
   B.4 User interface ......................................... 133
   B.5 Private subroutines .................................... 134
Danksagung .................................................... 137


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:12 2019. Размер: 9,124 bytes.
Посещение N 1076 c 16.12.2014