Contributor contact details .................................... xi
Woodhead Publishing Series in Electronic and Optical
Materials ...................................................... xv
Preface ....................................................... xxi
Part I Preparation of graphene .................................. 1
1 Epitaxial growth of graphene on silicon carbide (SiC) ........ 3
H. Huang, National University of Singapore, Singapore,
S. Chen, Nanyang Technological University, Singapore and
A.T.S. Wee and W. Chen, National University of Singapore,
Singapore
1.1 Introduction ............................................ 3
1.2 Ultrahigh vacuum (UHV) thermal decomposition of
single-crystal SiC ...................................... 4
1.3 Thermal decomposition of single-crystal SiC under
ambient pressure conditions ............................ 15
1.4 Thermal decomposition of single-crystal SiC thin
films and polycrystalline SiC substrates ............... 18
1.5 Epitaxial graphene formed by intercalation ............. 20
1.6 Conclusion ............................................. 21
1.7 Acknowledgements ....................................... 22
1.8 References ............................................. 22
2 Chemical vapor deposition (CVD) growth of graphene films .... 27
O. Frank and M. Kalbac, J. Heyrovsky Institute of Physical
Chemistry of the AS CR, v. v. i., Czech Republic
2.1 Introduction ........................................... 27
2.2 Chemical vapor deposition (CVD) on nickel .............. 28
2.3 Graphene with large domain sizes on copper ............. 31
2.4 Growth on copper single crystals ....................... 34
2.5 Periodically stacked multilayers ....................... 36
2.6 Isotope labeling of CVD graphene ....................... 38
2.7 Conclusion ............................................. 42
2.8 Acknowledgment ......................................... 42
2.9 References ............................................. 42
3 Chemically derived graphene ................................. 50
R.S. Sundaram, Max Planck Institute for Solid State
Research, Germany and University of Cambridge, UK
3.1 Introduction ........................................... 50
3.2 Synthesis of graphene oxide (GO) ....................... 52
3.3 Reduction of graphene oxide (GO) ....................... 53
3.4 Physicochemical structure of graphene oxide (GO) ....... 54
3.5 Electrical transport in graphene oxide (GO) ............ 60
3.6 Applications of graphene oxide/reduced graphene
oxide (GO/RGO) ......................................... 64
3.7 Conclusion ............................................. 72
3.8 Acknowledgements ....................................... 72
3.9 References ............................................. 72
4 Graphene produced by electrochemical exfoliation ............ 81
S. Bose, T. Kuila, N.H. Kim and J.H. Lee, Chonbuk
National University, Republic of Korea
4.1 Introduction ........................................... 81
4.2 Synthesis of graphene by electrochemical exfoliation:
a basic concept ........................................ 83
4.3 Applications of graphene and graphene-based materials .. 93
4.4 Conclusion ............................................. 94
4.5 Acknowledgments ........................................ 95
4.6 References ............................................. 95
Part II Characterisation of graphene ........................... 99
5 Transmission electron microscopy (ТЕМ) of graphene ......... 101
J.C. Meyer, University of Vienna, Austria
5.1 Introduction .......................................... 101
5.2 Graphene structure basics ............................. 104
5.3 Electron diffraction analysis of graphene ............. 105
5.4 Graphene and defects in graphene observed by
aberration-corrected transmission electron
microscopy (ТЕМ) and scanning transmission electron
microscopy (STEM) ..................................... 107
5.5 Insights from electron microscopic studies of
graphene .............................................. 112
5.6 Conclusion ............................................ 118
5.7 References ............................................ 119
6 Scanning tunneling microscopy (STM) of graphene ............ 124
A.L. Vázquez de Parga and R. Miranda, Autonomous
University of Madrid, Spain and Madrid Institute for
Advanced Studies in Nanoscience, Spain
6.1 Introduction .......................................... 124
6.2 Morphology, perfection and electronic structure of
graphene flakes deposited on inert substrates ......... 125
6.3 Morphology, perfection and electronic structure of
graphene epitaxially grown on semiconductor and
metallic substrates ................................... 131
6.4 Scanning tunneling microscopy (STM)/scanning
tunneling spectroscopy (STS) of point defects ......... 146
6.5 STM/STS on graphene nanoribbons (GNR) ................. 148
6.6 Conclusion ............................................ 150
6.7 References ............................................ 150
7 Raman spectroscopy of graphene ............................. 156
M. Hulman, International Laser Center and Danubia
NanoTech, Slovak Republic
7.1 Introduction .......................................... 156
7.2 Principles of Raman scattering ........................ 157
7.3 Phonons in graphene ................................... 160
7.4 Electronic structure of graphene ...................... 162
7.5 Raman spectrum of graphene ............................ 165
7.6 Conclusion ............................................ 181
7.7 Acknowledgement ....................................... 181
7.8 References ............................................ 181
8 Photoemission of low-dimensional carbon systems ............ 184
P. Ayala, University of Vienna, Austria
8.1 Introduction .......................................... 184
8.2 Photoemission spectroscopy ............................ 185
8.3 Accessing tfie electronic properties of carbon sp2
hybridizedsystems: the Cls core level ................. 190
8.4 Chemical state identification: inspection of bonding
environments .......................................... 193
8.5 Valence-band electronic structure ..................... 194
8.6 Conclusion ............................................ 194
8.7 Acknowledgement ....................................... 195
8.8 References ............................................ 195
Part III Electronic transport properties of graphene and
graphene devices .............................................. 197
9 Electronic transport in graphene: towards high mobility .... 199
К.I. Bolotin, Vanderbilt University, USA
9.1 Introduction .......................................... 199
9.2 Metrics for scattering strength ....................... 200
9.3 Methods of graphene synthesis ......................... 204
9.4 Sources of scattering in graphene ..................... 205
9.5 Approaches to increase carrier mobility ............... 211
9.6 Physical phenomena in high-mobility graphene .......... 219
9.7 Conclusion ............................................ 221
9.8 Acknowledgments ....................................... 221
9.9 References ............................................ 222
10 Electronic transport in bilayer graphene ................... 228
R. Asgari, Institute for Research in Fundamental Sciences
(IPM), Iran
10.1 Introduction .......................................... 228
10.2 Historical development of bilayer graphene ............ 230
10.3 Transport properties in bilayer graphene systems ...... 235
10.4 Many-body effects of transport properties in bilayer
graphene .............................................. 246
10.5 Conclusion ............................................ 260
10.6 References ............................................ 261
11 Effect of adsorbents on electronic transport in graphene ... 265
Y.C. Lin and P.W. Сhiu, National Tsing Hua University,
Republic of China
11.1 Introduction .......................................... 265
11.2 Interaction of adsorbates with graphene ............... 266
11.3 Transfer-induced metal and molecule adsorptions ....... 268
11.4 Influence of adsorbates on graphene field-effect
transistors ........................................... 274
11.5 Removal of polymer residues on graphene ............... 279
11.6 Conclusion ............................................ 287
11.7 References ............................................ 287
12 Single-charge transport in graphene ........................ 292
D.S. Lee, Korea Institute of Science and Technology
(KIST), South Korea
12.1 Introduction .......................................... 292
12.2 Single-charge tunneling ............................... 293
12.3 Electrical properties of graphene ..................... 296
12.4 Single-charge tunneling in graphene ................... 302
12.5 Charge localization in graphene ....................... 311
12.6 Conclusion ............................................ 317
12.7 References ............................................ 317
13 Graphene spintronics ....................................... 324
M. Shiraishi, Osaka University, Japan
13.1 Introduction .......................................... 324
13.2 Theories and important concepts ....................... 326
13.3 Experiments for generating pure spin current and the
physical properties of pure spin current .............. 330
13.4 Conclusion and future trends .......................... 337
13.5 References ............................................ 339
14 Graphene nanoelectromechanics (NEMS) ....................... 341
Z. Moktadir, Southampton University, UK
14.1 Introduction .......................................... 341
14.2 Graphene versus silicon ............................... 342
14.3 Graphene mechanical attributes ........................ 343
14.4 Fabrication technology for graphene
microelectromechanical systems (MEMS) ................. 346
14.5 Graphene nanoresonators ............................... 349
14.6 Graphene nanomechanical sensors ....................... 356
14.7 Conclusion and future trends .......................... 358
14.8 References ............................................ 358
Index ...................................................... 363
|