Yang W. Reflection seismology: theory, data processing and interpretation (Waltham; Oxford, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаYang W. Reflection seismology: theory, data processing and interpretation. - Waltham; Oxford: Elsevier, 2014. - xi, 255 p. - Bibliogr.: p.245-248. - Ind.: p.249-255. - ISBN 978-0-12-409538-0
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ ix
1  Introduction to the Wave Theory .............................. 1
   1.1  Wave Motion in Continuous Media ......................... 2
   1.2  Vibration ............................................... 5
   1.3  Propagation and Diffusion ............................... 6
   1.4  Acoustic Wave Equation .................................. 8
   1.5  Acoustic Wave Equation with Complex Coefficients ....... 11
        1.5.1  Complex Elastic Modulus and the Complex Wave
               Velocity ........................................ 11
        1.5.2  Damping Wave Equations in Viscoelastic Media .... 13
        1.5.3  Viscoelastic Models ............................. 14
   1.6  Acoustic Wave Equation with Valiant Density or
        Velocity ............................................... 16
   1.7  Summary ................................................ 18
2  Elastic Waves in a Perfect Elastic Solid .................... 19
   2.1  Stress Tensor and Strain Tensor ........................ 20
   2.2  Vector Wave Equation in Fully Elastic Media ............ 23
   2.3  Scalar Wave Equations in Fully Elastic Media ........... 27
   2.4  Elastic Wave Equation in Two-Dimensional Media ......... 30
   2.5  Elastic Wave Equations in Anisotropic Media ............ 31
   2.6  Boundary Conditions for Elastic Wave Equations ......... 34
   2.7  Elastic Wave Velocities of Rocks ....................... 37
3  From Elastic Waves to Seismic Waves ......................... 47
   3.1  On Acoustic Wave Equations with Variant Coefficients ... 48
   3.2  Seismic Reflection Records and Corresponding
        Equations .............................................. 54
        3.2.1  Wave Equations for Marine Reflection Records .... 54
        3.2.2  Wave Equations for Land Single-Component
               Records ......................................... 55
        3.2.3  Wave Equations for Land Three-Component
               Records ......................................... 55
   3.3  Elastic Waves in Horizontally Multilayered Media ....... 58
        3.3.1  Elastic Wave Equations in a Cylindrical
               Coordinate System ............................... 58
        3.3.2  Boundary Conditions ............................. 63
        3.3.3  Acoustic Wave Propagation in Layered Half
               Space ........................................... 64
   3.4  Elastic Waves in Fluid-Saturated Solid (I):
        Gassmann's Model ....................................... 66
        3.4.1  The Gassmann Model .............................. 66
        3.4.2  The Generalized Gassmann Model .................. 69
   3.5  Elastic Waves in Fluid-Saturated Solid (II): Biot's
        Theory ................................................. 71
        3.5.1  Low-Frequency Elastic Waves in a Fluid-
               Saturated Porous Solid .......................... 72
        3.5.2  All Frequency Elastic Waves in a Fluid-
               Saturated Porous Solid .......................... 76
   3.6  Tracking Reservoirs with the Gassmann Model ............ 77
4  Wave Equation Reduction with Reflection Seismic Data
   Processing .................................................. 83
   4.1  The Statics of Land Seismic Data ....................... 84
   4.2  Muting and Deghost Filtering ........................... 87
   4.3  Shear Wave Decoupling Process .......................... 88
   4.4  Suppression of Multiples Generated by the Ocean
        Bottom ................................................. 89
   4.5  CMP Stacking ........................................... 91
   4.6  The One-Way Wave Equation and the Wave Migration
        Equations .............................................. 95
   4.7  Reflectors ............................................. 99
   4.8  Summary ............................................... 105
5  Integral Solutions of the Wave Equation with Boundary
   and Initial Value Conditions ............................... 107
   5.1  Integral Solutions for Mixed Cauchy Boundary Value
        Problems .............................................. 109
   5.2  The Kirchhoff Integral Formula for the Boundary
        Value Wave Equation Problems .......................... 112
   5.3  The Green's Function of Boundary Value Problems for
        Wave Motion ........................................... 117
        5.3.1  The Green's Function Method .................... 117
        5.3.2  Green's Function for the Wave Equation with
               Zero Initial Value Problems .................... 119
        5.3.3  Green's Function of the Wave Equation in Half
               Space with a Point Source ...................... 122
   5.4  The Green's Function in Medium with Linear Velocity ... 124
   5.5  The Eikonal Equation and the Transport Equations ...... 127
   5.6  The Second-Type Green's Function with Nonhomogeneous
        Boundary Conditions ................................... 131
   5.7  Summary ............................................... 133

6  Appe equal Refe Inde: Decomposition and Continuation of
   Seismic Wave Field ......................................... 135
   6.1  The Equations of Acoustic Upgoing and Downgoing
        Waves ................................................. 137
   6.2  Kirchhoff Migration of the Prestack Seismic Data ...... 140
   6.3  Downward Continuation of the Reflective Seismic Wave
        Field in Homogenous Media ............................. 143
   6.4  Downward Continuation of Seismic Wave Field in
        Vertically Inhomogeneous Media ........................ 148
   6.5  The Pseudo-Differential Operator and Fourier
        Integral Operator ..................................... 151
        6.5.1  Analysis of the Boundary Value Problem of
               Wave Equation with Variant Coefficients ........ 151
        6.5.2  The Oscillatory Integral ....................... 153
        6.5.3  The Fourier Integral Operator .................. 156
        6.5.4  Decomposition of Fourier Integral Operator ..... 159
   6.6  Downward Continuation of the Seismic Wave Field in
        Inhomogeneous Medium .................................. 161
   6.7  Decomposition of Body Waves in Reflection Seismic
        Wave Field ............................................ 165
   6.8  Brief Summary ......................................... 169
7  Seismic Inversion .......................................... 171
   7.1  Introduction to Inverse Problems in Seismology ........ 172
        7.1.1  Inverse Problems in Seismic Exploration ........ 172
        7.1.2  The Generalized Solutions ...................... 174
        7.1.3  Linearized Iterative Seismic Inversion ......... 177
        7.1.4  Nonlinear Stochastic Inversions ................ 178
   7.2  Born Approximation Inversion by Inverse Scattering .... 180
   7.3  Acoustic Wave Equation Inversion in Vertically
        Inhomogeneous Background Media ........................ 187
   7.4  Acoustic Inverse Scattering Problems in Variant
        Velocity Media ........................................ 190
        7.4.1  Acoustic Generalized Radon Transformation ...... 190
        7.4.2  The Inverse Acoustic Generalized Radon
               Transformation ................................. 192
        7.4.3  Some Supplements about Inverse Scattering
               Procedures ..................................... 196
   7.5  Linearized Iterative Inversion of Seismic Reflection
        Data .................................................. 198
   7.6  The Maximum Entropy Inversion and Inversion for
        Reservoir Parameters .................................. 207
        7.6.1  Bayes' Theorem and Maximum Entropy Inversion ... 207
        7.6.2  Probability Density Inversion Based on
               Statistical Estimation of Rock Physical
               Properties ..................................... 210
   7.7  Summary ............................................... 212
Appendix: Finite difference method for solving the acoustic
wave equation with velocity and density variant media ......... 215
References .................................................... 245
Index ......................................................... 249


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:08 2019. Размер: 12,034 bytes.
Посещение N 1548 c 25.11.2014