Tao T. Compactness and contradiction (Providence, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTao T. Compactness and contradiction. - Providence: Amer. math. soc., 2013. - xii, 256 p.: ill. - Bibliogr.: p.249-253. - Ind.: p.255-256. - ISBN 978-0-8218-9492-7
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi
A remark on notation ........................................... xi
Acknowledgments ............................................... xii

Chapter 1  Logic and foundations ................................ 1
§1.1  Material implication ...................................... 1
§1.2  Errors in mathematical proofs ............................. 2
§1.3  Mathematical strength ..................................... 4
§1.4  Stable implications ....................................... 6
§1.5  Notational conventions .................................... 8
§1.6  Abstraction ............................................... 9
§1.7  Circular arguments ....................................... 11
§1.8  The classical number systems ............................. 12
§1.9  Round numbers ............................................ 15
§1.10 The "no-self-defeating object" argument, revisited ....... 16
§1.11 The "no-self-defeating object" argument, and the
      vagueness paradox ........................................ 28
§1.12  A computational perspective on set theory ............... 35

Chapter 2  Group theory ........................................ 51
§2.1  Torsors .................................................. 51
§2.2  Active and passive transformations ....................... 54
§2.3  Cayley graphs and the geometry of groups ................. 56
§2.4  Group extensions ......................................... 62
§2.5  A proof of Gromov's theorem .............................. 69

Chapter 3  Analysis ............................................ 79
§3.1  Orders of magnitude, and tropical geometry ............... 79
§3.2  Descriptive set theory vs. Lebesgue set theory ........... 81
§3.3  Complex analysis vs. real analysis ....................... 82
§3.4  Sharp inequalities ....................................... 85
§3.5  Implied constants and asymptotic notation ................ 87
§3.6  Brownian snowflakes ...................................... 88
§3.7  The Euler-Maclaurin formula, Bernoulli numbers, the
      zeta function, and real-variable analytic continuation ... 88
§3.8  Finitary consequences of the invariant subspace
      problem ................................................. 104
§3.9  The Guth-Katz result on the Erdцs distance problem ...... 110
§3.10 The Bourgain-Guth method for proving restriction
      theorems ................................................ 123

Chapter 4  Non-Standard analysis .............................. 133
§4.1  Real numbers, non-standard real numbers, and finite
      precision arithmetic .................................... 133
§4.2  Non-Standard analysis as algebraic analysis ............. 136
§4.3  Compactness and contradiction: the correspondence
      principle in ergodic theory ............................. 137
§4.4  Non-Standard analysis as a completion of standard
      analysis ................................................ 150
§4.5  Concentration compactness via non-standard analysis ..... 168

Chapter 5  Partial differential equations ..................... 181
§5.1  Quasilinear well-posedness .............................. 181
§5.2  A type diagram for function spaces ...................... 189
§5.3  Amplitude-frequency dynamics for semilinear dispersive
      equations ............................................... 194
§5.4  The Euler-Arnold equation ............................... 203

Chapter 6  Miscellaneous ...................................... 217
§6.1  Multiplicity of perspective ............................. 217
§6.2  Memorisation vs. derivation ............................. 220
§6.3  Coordinates ............................................. 222
§6.4  Spatial scales .......................................... 227
§6.5  Averaging ............................................... 228
§6.6  What colour is the sun? ................................. 231
§6.7  Zeno's paradoxes and induction .......................... 232
§6.8  Jevons' paradox ......................................... 233
§6.9  Bayesian probability .................................... 236
§6.10 Best, worst, and average-case analysis .................. 242
§6.11 Duality ................................................. 244
§6.12 Open and closed conditions .............................. 246

Bibliography .................................................. 249

Index ......................................................... 255


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:08 2019. Размер: 8,139 bytes.
Посещение N 1167 c 25.11.2014