Preface ................................................... xv
List of contributors ................................... xviii
Notation ................................................ xxii
Part I FUNDAMENTALS ............................................ 1
1 From near-field optics to optical antennas ................. 3
D. Pohl
1.1 The near-field ............................................. 3
1.2 Energies and photons ....................................... 4
1.3 Foundations of near-field optical microscopy ............... 5
1.4 Scanning near-field optical microscopy ..................... 5
1.5 Problems of near-field optical microscopy .................. 7
1.6 From near-field optical microscopy to optical antennas ..... 8
1.7 Optical antennas ........................................... 8
1.8 Conclusions and outlook ................................... 10
2 Optical antenna theory, design and applications ........... 11
A. Alù and N. Engheta
2.1 Introduction .............................................. 11
2.2 Nanoantennas and optical nanocircuits ..................... 12
2.2.1 Optical nanocircuit theory ......................... 13
2.2.2 Nanoantennas as optical lumped elements ............ 14
2.2.3 Other quantities of interest for optical antenna
operation .......................................... 17
2.3 Loading, tuning and matching optical antennas ............. 18
2.3.1 Loading, impedance matching and optical wireless
links .............................................. 18
2.3.2 Optimizing bandwidth and sensitivity with
nanoloads .......................................... 21
2.3.3 Optical nonlinearities as variable nanoloads ....... 24
2.4 Conclusions and outlook ................................... 25
3 Impedance of a nanoantenna ................................ 26
F. Marquier and J.-J. Greffet
3.1 Introduction .............................................. 26
3.2 Impedance of a nanoantenna ................................ 27
3.2.1 Definition ......................................... 27
3.2.2 A vacuum ........................................... 28
3.2.3 A microcavity ...................................... 30
3.2.4 A dipolar nanoantenna .............................. 31
3.2.5 Comparison of a microcavity and a nanoantenna ...... 32
3.2.6 Ohmic and radiative losses ......................... 33
3.3 Impedance of a quantum emitter ............................ 34
3.3.1 A two-level system ................................. 34
3.3.2 Impedance and multiple scattering .................. 36
3.4 Applications .............................................. 37
3.4.1 Weak coupling and strong coupling .................. 37
3.4.2 Conjugate impedance matching condition ............. 41
3.4.3 Maximum absorption by a metallic nanoparticle ...... 42
3.4.4 Fluorescence enhancement by metallic
nanoparticles ...................................... 43
3.5 Conclusions ............................................... 45
4 Where high-frequency engineering advances optics. Active
nanoparticles as nanoantennas ............................. 46
R.W. Ziolkowski, S. Arslanagić and J. Geng
4.1 Introduction .............................................. 46
4.2 Coated nanoparticles as active nanoantennas ............... 50
4.2.1 Configuration ...................................... 50
4.2.2 Theory ............................................. 51
4.2.3 Coated-nanoparticle materials and gain models ...... 52
4.3 Results and discussion .................................... 53
4.3.1 Far-field results .................................. 54
4.3.2 Near-field results ................................. 54
4.3.3 Influence of the dipole location ................... 56
4.3.4 Additional effects - transparency .................. 58
4.3.5 Additional coated-nanoparticle cases ............... 59
4.4 Open coated nanocylinders as active nanoantennas .......... 60
4.4.1 Nanoparticle model ................................. 60
4.4.2 Results and discussion ............................. 61
4.5 Conclusions ............................................... 63
5 Optical antennas for field-enhanced spectroscopy .......... 64
J. Aizpurua and R. Esteban
5.1 Introduction .............................................. 64
5.1.1 Field enhancement .................................. 64
5.1.2 Spectral response .................................. 65
5.1.3 Shape .............................................. 67
5.1.4 Basic ingredients to increase the field ............ 69
5.2 Surface-enhanced Raman scattering ......................... 73
5.3 Surface-enhanced infrared absorption ...................... 75
5.4 Metal-enhanced fluorescence ............................... 76
5.5 Quantum effects in nanoantennas ........................... 79
6 Directionality, polarization and enhancement by optical
antennas .................................................. 81
N.F. van Hulst, Т.H. Taminiau and A.G. Curto
6.1 Introduction .............................................. 81
6.1.1 Optical antennas ................................... 81
6.1.2 Interaction with single emitters ................... 84
6.1.3 Resonant coupling of antenna and emitter ........... 87
6.2 Local excitation by optical antennas ...................... 89
6.2.1 Single emitters as near-field probes ............... 89
6.2.2 The monopole antenna case .......................... 89
6.3 Emission control by optical antennas ...................... 93
6.3.1 Polarization of single molecule emission ........... 93
6.3.2 Directionality of single molecule emission ......... 96
6.4 Conclusions and outlook ................................... 99
7 Antennas, quantum optics and near-field microscopy ....... 100
V. Sandoghdar, M. Agio, X.-W. Chen, S. Götzinger and
K.-G. Lee
7.1 Introduction ............................................. 100
7.2 Microcavities ............................................ 103
7.3 Antennas ................................................. 104
7.3.1 Small antennas .................................... 105
7.3.2 Planar antennas ................................... 107
7.4 Modification of the spontaneous emission rate ............ 107
7.4.1 Planar antennas ................................... 107
7.4.2 Microcavities ..................................... 108
7.4.3 Plasmonic nanoantennas ............................ 109
7.4.4 Metallo-dielectric hybrid antennas ................ 111
7.5 Generation of single photons and directional emission .... 113
7.5.1 Microcavities ..................................... 113
7.5.2 Plasmonic nanoantennas ............................ 113
7.5.3 Planar antennas ................................... 114
7.6 Antennas immersed in vacuum fluctuations: Casimir and
van der Waals interactions ............................... 116
7.7 Scanning near-field optical microscopy ................... 118
7.8 Outlook .................................................. 120
8 Nonlinear optical antennas ............................... 122
H. Harutyunyan, G. Volpe and L. Novotny
8.1 Introduction ............................................. 122
8.2 Design fundamentals ...................................... 123
8.2.1 Origin of optical nonlinearities in nanoantennas .. 123
8.2.2 Nonlinear susceptibilities of optical materials ... 126
8.3 Nonlinearities in single nanoparticles ................... 127
8.3.1 Nanoscale and macroscale nonlinear phenomena ...... 127
8.3.2 Symmetry considerations on the nanoscale .......... 128
8.3.3 Nonlinear polarization in nanoparticles ........... 128
8.4 Nonlinearities in coupled antennas and arrays ............ 129
8.4.1 Enhancement of metal nonlinearities ............... 130
8.4.2 Enhancement of nonlinearities in surrounding
media ............................................. 131
8.4.3 TPL nonlinear microscopy of coupled particles ..... 132
8.5 Conclusions and outlook .................................. 133
9 Coherent control of nano-optical excitations ............. 135
W. Pfeiffer, M. Aeschlimann and T. Brixner
9.1 Introduction ............................................. 135
9.2 Local-field control principles ........................... 138
9.2.1 Fundamental quantities ............................ 139
9.2.2 Spectral enhancement .............................. 140
9.2.3 Local polarization-mode interference .............. 142
9.2.4 Local pulse compression ........................... 143
9.2.5 Optimal control ................................... 144
9.2.6 Analytic optimal control rules .................... 146
9.2.7 Time reversal ..................................... 148
9.2.8 Spatially shaped excitation fields ................ 149
9.3 Local-field control examples ............................. 150
9.3.1 Spatial excitation control ........................ 150
9.3.2 Spatiotemporal excitation control ................. 152
9.3.3 Propagation control ............................... 153
9.4 Applications ............................................. 154
9.4.1 Space - time-resolved spectroscopy ................ 154
9.4.2 Coherent two-dimensional nanoscopy ................ 155
9.4.3 Unconventional excitations ........................ 155
9.5 Conclusions and outlook .................................. 156
Part II MODELING. DESIGN AND CHARACTERIZATION ................ 157
10 Computational electrodynamics for optical antennas ....... 159
O.J.F. Martin
10.1 Introduction ............................................. 159
10.2 The numerical solution of Maxwell equations .............. 160
10.2.1 Finite-difference time-domain method .............. 161
10.2.2 Finite-differences method ......................... 162
10.2.3 Finite-elements method ............................ 163
10.2.4 Volume integral-equation method ................... 165
10.2.5 Boundary-element method ........................... 166
10.2.1 Validity checks ................................... 168
10.4 Modeling realistic optical antennas ...................... 169
10.5 Tuning the antenna properties ............................ 171
10.6 Conclusions and outlook .................................. 174
11 First-principles simulations of near-field effects ....... 175
J.L. Payton, S.M. Morton and L. Jensen
11.1 Introduction ............................................. 175
11.2 Quantum effects on the near-field ........................ 177
11.3 Plasmon-exciton hybridization ............................ 181
11.4 Near-field effects on spectroscopy ....................... 187
11.4.1 Surface-enhanced Raman scattering ................. 188
11.4.2 Surface-enhanced fluorescence ..................... 191
11.5 Near-field effects on molecular photochemistry ........... 192
11.5.1 Early examples of photochemistry .................. 193
11.5.2 Photochemical enhancement mechanism ............... 193
11.6 Conclusions and outlook .................................. 196
12 Field distribution near optical antennas at the
subnanometer scale ....................................... 197
C. Pecharromán
12.1 Introduction ............................................. 197
12.2 Theoretical background ................................... 199
12.3 Results .................................................. 203
12.3.1 Sphere dimers ..................................... 203
12.3.2 Nano-rods ......................................... 207
12.3.3 Cylinders ......................................... 209
12.4 Enhancement and localization versus distance in
particle dimers .......................................... 211
12.5 Conclusions .............................................. 213
13 Fabrication and optical characterization of
nanoantennas ............................................. 215
J. Prangsma, P. Biagioni and B. Hecht
13.1 Introduction ............................................. 215
13.2 Fabrication of single-crystalline antennas ............... 216
13.2.1 Role of the dielectric function ................... 217
13.2.2 Effects of geometry and multicrystallinity ........ 219
13.2.3 Fabrication issues ................................ 220
13.2.4 Single-crystalline nanostructures ................. 221
13.3 Optical characterization of nanoantennas ................. 223
13.3.1 Far-field scattering .............................. 223
13.3.2 Determining the near-field intensity enhancement .. 224
13.3.3 Emission directivity and coupling to quantum
emitters .......................................... 230
13.4 Conclusions and outlook .................................. 232
14 Probing and imaging of optical antennas with РЕЕМ ........ 234
P. Melchior, D. Bayer and M. Aeschlimann
14.1 Introduction ............................................. 234
14.2 Photoemission electron microscopy ........................ 236
14.2.1 Instrumental setup ................................ 236
14.2.2 The photoemission process ......................... 238
14.3 Near-field investigation of nanostructured surfaces ...... 240
14.3.1 Local near-field mapping .......................... 240
14.3.2 Imaging of surface plasmon polaritons ............. 244
14.3.3 Observing and controlling the near-field
distribution ...................................... 244
14.3.4 Nonlinearities on structured surfaces ............. 247
14.4 Time-resolved two-photon photoemission ................... 248
14.4.1 Phase-averaged time-resolved РЕЕМ ................. 250
14.4.2 Phase-resolved РЕЕМ ............................... 252
14.5 Other potential applications ............................. 253
14.5.1 Attosecond nanoplasmonic field microscope ......... 253
14.5.2 Magneto-plasmonics ................................ 253
14.6 Conclusions and outlook .................................. 254
15 Fabrication, characterization and applications of
optical antenna arrays ................................... 256
D. Dregely, J. Dorfmüller, M. Hentschel and H. Glessen
15.1 Introduction ............................................. 256
15.2 Theory of antenna arrays ................................. 257
15.2.1 The array factor .................................. 257
15.2.2 Two-dimensional planar arrays and phased arrays ... 259
15.2.3 Directionality enhancement ........................ 260
15.3 Differences between RF and optical antenna arrays ........ 261
15.3.1 Effective antenna length .......................... 261
15.3.2 Differences in antenna emission patterns .......... 262
15.3.3 Antenna losses .................................... 262
15.4 The optical Yagi-Uda antenna - linear array of
plasmonic dipoles ........................................ 262
15.4.1 Fabrication and characterization of transmitting
optical Yagi-Uda antennas ......................... 264
15.4.2 Design of receiving optical Yagi-Uda antennas ..... 264
15.4.3 Characterization of receiving optical Yagi-Uda
antenna ........................................... 265
15.5 Two-dimensional arrays of optical antennas ............... 268
15.5.1 Characterization of planar optical antenna
arrays ............................................ 268
15.5.2 Fabricating three-dimensional nanoantennas ........ 270
15.5.3 Optical properties ................................ 271
15.5.4 Experimental characterization ..................... 272
15.6 Applications of optical antenna arrays ................... 274
15.6.1 Phased arrays for optical wavelengths ............. 275
15.6.2 Optical antenna links ............................. 276
16 Novel fabrication methods for optical antennas ........... 277
W. Zhou, J.Y. Suh and T.W. Odom
16.1 Introduction ............................................. 277
16.2 Conventional methods to create nanoantennas .............. 279
16.3 Soft nanolithography ..................................... 280
16.3.1 Master ............................................ 281
16.3.2 Elastomeric mask .................................. 281
16.3.3 Nanopatterned template ............................ 281
16.3.4 Optical antenna arrays ............................ 282
16.4 Strongly coupled nanoparticle arrays ..................... 283
16.5 Metal-insulator-metal nanocavity arrays .................. 285
16.6 Three-dimensional bowtie antenna arrays .................. 289
16.7 Conclusions and outlook .................................. 293
17 Plasmonic properties of colloidal clusters: towards new
metamaterials and optical circuits ....................... 294
J.A. Fan and F. Capasso
17.1 Introduction ............................................. 294
17.2 Self-assembled magnetic clusters ......................... 295
17.3 Plasmonic Fano-like resonances ........................... 303
17.4 DNA cluster assembly ..................................... 311
17.5 Conclusions and outlook .................................. 316
Part III APPLICATIONS ......................................... 319
18 Optical antennas for information technology and energy
harvesting ............................................... 321
M.L. Brongersma
18.1 Introduction ............................................. 321
18.2 Coupling plasmonic antennas to semiconductors ............ 322
18.3 Plasmonic antennas for information technology and
energy harvesting ........................................ 332
18.4 Operation of semiconductor-based optical antennas ........ 334
18.5 Semiconductor antennas for information technology and
energy harvesting ........................................ 336
18.6 Conclusions and outlook .................................. 338
19 Nanoantennas for refractive-index sensing ................ 340
T. Shegai, M. Svedendahl, S. Chen. A. Dahlin and M. Käll
19.1 Introduction ............................................. 340
19.2 An overview of plasmonic sensing ......................... 342
19.2.1 Bulk sensitivity .................................. 342
19.2.2 Molecular sensing ................................. 347
19.3 Recent trends in plasmonic sensing ....................... 351
19.3.1 Fano resonances .................................. 351
19.3.2 Alternative sensing schemes ....................... 353
19.3.3 Sensing with nanoholes ............................ 354
19.3.4 Plasmonic sensing for materials science ........... 354
19.4 Conclusions and outlook .................................. 355
20 Nanoimaging with optical antennas ........................ 356
P. Verma and Y. Saito
20.1 Introduction ............................................. 356
20.2 The diffraction limit and spatial resolution ............. 357
20.3 Evanescent waves and metals .............................. 358
20.3.1 Excitation of surface plasmon-polaritons with
light ............................................. 359
20.3.2 Optical antennas .................................. 359
20.4 Tip-enhanced Raman spectroscopy .......................... 360
20.4.1 Spatial resolution in TERS ........................ 362
20.4.2 Imaging intrinsic properties through TERS ......... 363
20.5 Further improvement in imaging through optical antennas .. 364
20.5.1 Combining optical antennas with mechanical
effects ........................................... 364
20.6 Optical antennas as nanolenses ........................... 366
20.7 Conclusions and outlook .................................. 367
21 Aperture optical antennas ................................ 369
J. Wenger
21.1 Introduction ............................................. 369
21.2 Enhanced light-matter interaction on nanoaperture
antennas ................................................. 370
21.2.1 Single apertures .................................. 370
21.2.2 Single apertures surrounded by surface
corrugations ...................................... 372
21.2.3 Aperture arrays ................................... 374
21.3 Biophotonic applications of nanoaperture antennas ........ 376
21.3.1 Enhanced fluorescence detection and analysis ...... 376
21.3.2 Molecular sensing and spectroscopy with aperture
arrays ............................................ 380
21.4 Nanophotonic applications of nanoaperture antennas ....... 383
21.4.1 Photodetectors and filters ........................ 383
21.4.2 Nanosources ....................................... 383
21.5 Conclusions .............................................. 385
References ............................................... 387
Index .................................................... 446
|