Preface ......................................................... v
Chapter 1  A survey of sphere theorems in geometry .............. 1
§1.1  Riemannian geometry background ............................ 1
§1.2  The Topological Sphere Theorem ............................ 6
§1.3  The Diameter Sphere Theorem ............................... 7
§1.4  The Sphere Theorem of Micallef and Moore .................. 9
§1.5  Exotic Spheres and the Differentiable Sphere Theorem ..... 13
Chapter 2  Hamilton's Ricci flow ............................... 15
§2.1  Definition and special solutions ......................... 15
§2.2  Short-time existence and uniqueness ...................... 17
§2.3  Evolution of the Riemann curvature tensor ................ 21
§2.4  Evolution of the Ricci and scalar curvature .............. 28
Chapter 3  Interior estimates .................................. 31
§3.1  Estimates for the derivatives of the curvature tensor .... 31
§3.2  Derivative estimates for tensors ......................... 33
§3.3  Curvature blow-up at finite-time singularities ........... 36
Chapter 4  Ricci flow on S2 .................................... 37
§4.1  Gradient Ricci solitons on S2 ............................ 37
§4.2  Monotonicity of Hamilton's entropy functional ............ 39
§4.3  Convergence to a constant curvature metric ............... 45
Chapter 5  Pointwise curvature estimates ....................... 49
§5.1  Introduction ............................................. 49
§5.2  The tangent and normal cone to a convex set .............. 49
§5.3  Hamilton's maximum principle for the Ricci flow .......... 53
§5.4  Hamilton's convergence criterion for the Ricci flow ...... 58
Chapter 6  Curvature pinching in dimension 3 ................... 67
§6.1  Three-manifolds with positive Ricci curvature ............ 67
§6.2  The curvature estimate of Hamilton and Ivey .............. 70
Chapter 7  Preserved curvature conditions in higher
dimensions ..................................................... 73
§7.1  Introduction ............................................. 73
§7.2  Nonnegative isotropic curvature .......................... 74
§7.3  Proof of Proposition 7.4 ................................. 77
§7.4  The cone   ............................................... 87
§7.5  The cone Ĉ ............................................... 90
§7.6  An invariant set which lies between   and Ĉ .............. 93
§7.7  An overview of various curvature conditions ............. 100
Chapter 8  Convergence results in higher dimensions ........... 101
§8.1  An algebraic identity for curvature tensors ............. 101
§8.2  Constructing a family of invariant cones ................ 106
§8.3  Proof of the Differentiable Sphere Theorem .............. 112
§8.4  An improved convergence theorem ......................... 117
Chapter 9  Rigidity results ................................... 121
§9.1  Introduction ............................................ 121
§9.2  Berger's classification of holonomy groups .............. 121
§9.3  A version of the strict maximum principle ............... 123
§9.4  Three-manifolds with nonnegative Ricci curvature ........ 126
§9.5  Manifolds with nonnegative isotropic curvature .......... 129
§9.6  Kähler-Einstein and quaternionic-Kähler manifolds ....... 135
§9.7  A generalization of a theorem of Tachibana .............. 146
§9.8  Classification results .................................. 149
Appendix A  Convergence of evolving metrics ................... 155
Appendix B  Results from complex linear algebra ............... 159
Problems ...................................................... 163
Bibliography .................................................. 169
Index ......................................................... 175
  |