The physics and engineering of compact quantum dot-based lasers for biophotonics (Weinheim, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThe physics and engineering of compact quantum dot-based lasers for biophotonics / ed. by E.K.Rafailov. - Weinheim: Wiley-VCH, 2014. - xii, 252 p.: ill. - Incl. bibl. ref. - Ind.: p.249-252. - ISBN 978-3-527-41184-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
     Foreword .................................................. IX
     List of Contributors ...................................... XI
     Introduction ............................................... 1
     Edik U. Rafailov
     References ................................................. 5

1    Quantum Dot Technologies ................................... 7
     Richard A. Hogg and Ziyang Zhang
1.1  Motivation for Development of Quantum Dots ................. 7
1.2  Gain and Quantum Confinement in a Semiconductor Laser ...... 7
     1.2.1  Тор-Down Approach .................................. 10
     1.2.2  Bottom-Up Approach ................................. 13
1.3  Self-Assembled Quantum Dot Technology ..................... 14
     1.3.1  Molecular Beam Epitaxy ............................. 14
     1.3.2  Growth Modes ....................................... 17
     1.3.3  Quantum Dot Growth Dynamics ........................ 18
            1.3.3.1  The Interaction of the Quantum Dot and
                     the Wetting Layer ......................... 18
            1.3.3.2  The Interaction of the Quantum Dot with
                     Underlying Layers and Capping Layers ...... 19
            1.3.3.3  Growth Interruption ....................... 19
            1.3.3.4  Arsenic Pressure .......................... 20
            1.3.3.5  Growth Temperature ........................ 20
            1.3.3.6  Growth Rate and Material Coverage ......... 21
     1.3.4  Quantum Dot Growth Thermodynamic Processes ......... 21
1.4  Physics and Device Properties of S-K Quantum Dots ......... 23
     1.4.1  Temperature Insensitivity .......................... 23
     1.4.2  Low Threshold Current Density ...................... 24
     1.4.3  Material Gain and Modal Gain ....................... 25
     1.4.4  Broad Spectral Bandwidth Devices and Spectral
            Coverage ........................................... 25
     1.4.5  Ultrafast Gain Recovery ............................ 29
1.5  Extension of Emission Wavelength of GaAs-Based Quantum
     Dots ...................................................... 31
     1.5.1  Short-Wavelength Quantum Dot Light Emission ........ 31
            1.5.1.1  InP/GalnP Quantum Dots .................... 31
            1.5.1.2  Type II InAlAs/AlGaAs Quantum Dots ........ 33
     1.5.2  Long-Wavelength QD Light Emission .................. 33
            1.5.2.1  Low Growth Temperature InAs/GaAs Quantum
                     Dots ...................................... 34
            1.5.2.2  InAs QDs Grown on an InGaAs Metamorphic
                     Layer ..................................... 34
            1.5.2.3  InGaAsSb Capped InAs/GaAs Quantum Dots
                     and InGaNAs Capped InAs/GaAs Quantum
                     Dots ...................................... 34
            1.5.2.4  Bilayer InAs/GaAs QD Structures ........... 34
            1.5.2.5  Asymmetric Dot in WELL QD Structure ....... 34
1.6  Future Prospects .......................................... 36
     Acknowledgments ........................................... 37
     References ................................................ 37

2    Ultra-Short-Pulse QD Edge-Emitting Lasers ................. 43
     Stefan Breuer, Dimitris Syvridis, and Edik U. Rafailov
2.1  Introduction .............................................. 43
2.2  Simulations ............................................... 45
2.3  Broadly Tunable Frequency-Doubled EC-QD Lasers ............ 48
2.4  Two-Section Monolithic Mode-Locked QD Lasers .............. 52
     2.4.1  Simultaneous GS and ES ML .......................... 53
     2.4.2  QD Absorber Resistor-SEED Functionality ............ 57
     2.4.3  Pulse Width Narrowing due to GS Splitting .......... 59
2.5  Tapered Monolithic Mode-Locked QD Lasers .................. 61
     2.5.1  High-Peak Power and Subpicosecond Pulse
            Generation ......................................... 62
     2.5.2  Suppression of Pulse Train Instabilities of
            Tapered QD-MLLs .................................... 69
2.6  QD-SOAs ................................................... 71
     2.6.1  Straight-Waveguide QD-SOAs ......................... 71
     2.6.2  Tapered-Waveguide QD-SOAs .......................... 72
     2.6.3  QD-SOA Noise ....................................... 75
2.7  Pulsed EC-QD Lasers with Tapered QD-SOA ................... 77
     2.7.1  EC-MLQDL ........................................... 77
     2.7.2  EC-MLQDL with Postamplification by Tapered
            QD-SOA ............................................. 80
     2.7.3  Wavelength-Tunable EC-MLQDL with Tapered QD-SOA .... 84
2.8  Conclusion ................................................ 87
     Acknowledgments ........................................... 88
     References ................................................ 89

3    Quantum Dot Semiconductor Disk Lasers ..................... 95
     Jussi Rautiainen, Manias Butkus, and Oleg Okhotnikov
3.1  Introduction .............................................. 95
3.2  General Concept of Semiconductor Disk Lasers .............. 96
3.3  Toward Operation at the 1-1.3 μm Spectral Range .......... 98
3.4  Quantum Dots Growth and Characterization .................. 98
3.5  Quantum Dots for Laser Application: From Edge Emitters
     to Disk Lasers ............................................ 99
3.6  Details of the Quantum Dot Gain Media for Disk Cavity ..... 99
     3.6.1  1040 nm Disk Gain Design .......................... 201
     3.6.2  1180 nm Disk Gain Structure ....................... 101
     3.6.3  1260 nm Disk Gain Structure ....................... 101
     3.6.4  Gain Medium Characterization at the Wafer Level ... 103
3.7  Disk Laser Performance ................................... 107
     3.7.1  Gain Chip Assembly and Thermal Management ......... 107
     3.7.2  1040 nm InGaAs Dot Disk Laser ..................... 107
     3.7.3  1180 nm Disk Laser ................................ 108
     3.7.4  1260 nm Quantum Dot Disk Laser .................... 109
3.8  Tunable Quantum Dot Semiconductor Disk Laser ............. 111
3.9  Second Harmonic Generation with Quantum Dot Disk Laser
     Cavity ................................................... 111
     3.9.1  Experimental Results .............................. 113
3.10 Disk Laser with Flip-Chip Design of the Gain Medium ...... 114
     3.10.1 Gain Structure Description ........................ 115
     3.10.2 Experimental Results .............................. 115
3.11 Conclusions .............................................. 116
     Acknowledgments .......................................... 116
     References ............................................... 116

4    Semiconductor Quantum-Dot Saturable Absorber Mirrors
     for Mode-Locking Solid-State Lasers ...................... 121
     Valdas Pasiskevicius, Niels Meiser, Manias Butkus,
     Bojan Resan, Kurt J. Weingarten, Richard A. Hogg, and
     Ziyang Zhang
4.1  Scope of the Chapter ..................................... 121
4.2  Introduction ............................................. 122
4.3  Quantum-Well Saturable Absorbers: Overview ............... 123
4.4  Quantum-Dot Saturable Absorbers: Basic Principles and
     Fabrication Technologies ................................. 126
4.5  Quantum-Dot Saturable Absorbers for Mode-Locking of
     Solid-State Lasers at 1 um ............................... 132
     4.5.1  QD-SAM Design and Characterization ................ 132
     4.5.2  QD-SAM Mode-Locked Yb:KYW Lasers .................. 140
4.6  p-i-n Junction QD SESAMs and Their Applications .......... 143
     4.6.1  Cnforsterite Laser Mode-Locked Using p-i-n QD
            SESAM ............................................. 145
     4.6.2  Nonlinear Reflectivity and Absorption Recovery
            Dynamics in p-i-n QD-SAM .......................... 147
4.7  InAs/GaAs QD-SAM for 10 GHz Repetition Rate Mode-Locked
     Laser at 1.55 urn ........................................ 151
4.8  InP Quantum Dot Saturable Absorbers for Mode-Locking
     High-Repetition Rate Ti:sapphire Lasers .................. 157
4.9  Conclusions .............................................. 160
4.7  Acknowledgments .......................................... 160
     References ............................................... 160

5    QD Ultrafast and Continuous Wavelength Laser Diodes for
     Applications in Biology and Medicine ..................... 171
     Pablo Loza-Alvarez, Rodrigo Avilés-Espinosa, Steve
     J. Matcher, D. Childs, and Sergei G. Sokolovski
5.1  Compact Laser Systems for Nonlinear Imaging
     Applications ............................................. 171
     5.1.1  Introduction ...................................... 171
            5.1.1.1  The Multimodal Microscope ................ 174
     5.1.2  Microscopy Workstation Preparation for Infrared
            Wavelengths ....................................... 176
            5.1.2.1 Long-Term Exposure Effects on Living
                    Samples at 1550 nm ........................ 178
     5.1.3  Quantum-Dot-Based Optically Pumped Vertical
            Extended Cavity Surface-Emitting Lasers for
            Nonlinear Imaging ................................. 181
            5.1.3.1  The Compact Femtosecond Semiconductor
                     Disk Laser System ........................ 181
            5.1.3.2  Nonlinear Imaging Tests .................. 182
     5.1.4  Future Prospects: Edge-Emitting Laser Prototypes
            for Nonlinear Imaging ............................. 188
            5.1.4.1  Ultra-Short Pulsed Semiconductor Edge-
                     Emitting Lasers .......................... 188
     5.1.5  Conclusions ....................................... 194
5.2  QD Devices and Their Application in Optical Coherence
     Tomography ............................................... 196
     5.2.1  Overview of Optical Coherence Tomography .......... 196
     5.2.2  SLD Devices ....................................... 199
     5.2.3  Broadband Gain Material ........................... 202
            5.2.3.1  Use of QDs SLDs for Time-Domain OCT ...... 204
     5.2.4  Swept Lasers ...................................... 206
     5.2.5  The QD Swept Source Laser for OCT ................. 209
     5.2.6  Summary and Future Outlook ........................ 212
5.3  Infrared QD Laser Application in Cancer Photodynamic
     Therapy: Killing Tumor Cells without Photosensitizers .... 212
     5.3.1  Introduction ...................................... 213
     5.3.2  Singlet Oxygen in Organic Solution ................ 214
     5.3.3  Laser-Induced хОг Production in Living Cells ...... 216
     5.3.4  Cytosolic Free Calcium Level and Ion Channel
            Activity under Laser Pulse ........................ 218
     5.3.5  Laser-Triggered Cancer Cell Death ................. 220
     5.3.6  Conclusions and Future Perspectives ............... 221
     Acknowledgments .......................................... 222
     References ............................................... 222

6    Conclusion and Future Perspectives ....................... 231
     Edik U. Rafailov
     Color Plates ............................................. 233
     Index .................................................... 249


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:00 2019. Размер: 15,334 bytes.
Посещение N 1526 c 28.10.2014