Preface ...................................................... XIII
List of Contributors ........................................... XV
1 Synthesis, Characterization, and Selected Properties of
Craphene ................................................... 1
C.N.R. Rao, Urmimala Maitra, and H.S.S. Ramakrishna Matte
1.1 Introduction ............................................... 1
1.2 Synthesis of Single-Layer and Few-Layered Graphenes ........ 4
1.2.1 Mechanical Exfoliation .............................. 5
1.2.2 Chemical Exfoliation ................................ 5
1.2.3 Chemical Vapor Deposition ........................... 8
1.2.4 Arc Discharge ....................................... 8
1.2.5 Reduction of Graphite Oxide ........................ 10
1.3 Synthesis of Graphene Nanoribbons ......................... 12
1.4 Selected Properties ....................................... 15
1.4.1 Magnetic Properties ................................ 15
1.4.2 Electrical Properties .............................. 19
1.4.2.1 Supercapacitors ........................... 22
1.4.2.2 Photovoltaics and Photodetectors .......... 24
1.4.2.3 Field Emission and Blue Light Emission .... 25
1.4.3 Molecular Charge Transfer .......................... 25
1.4.4 Decoration with Metal and Oxide Nanoparticles ...... 28
1.4.5 Surface Area and Gas Adsorption .................... 30
1.4.6 Mechanical Properties .............................. 32
1.4.7 Quenching of Fluorescence of Aromatics ............. 34
1.4.8 Chemical Storage of Hydrogen and Halogens .......... 36
1.5 Inorganic Graphene Analogs ................................ 39
References ................................................ 40
2 Understanding Craphene via Raman Scattering ............... 49
A.K. Sood and Biswanath Chakraborty
2.1 Introduction .............................................. 49
2.2 Atomic Structure and Electronic Structure of Graphene ..... 49
2.3 Phonons and Raman Modes in Graphene ....................... 51
2.4 Layer Dependence of Raman Spectra ......................... 57
2.4.1 G-Band ............................................. 57
2.4.2 2D-Band ............................................ 57
2.4.3 D-Band ............................................. 59
2.4.4 Combination Modes in the Range 1650-2300 cm-1 ...... 59
2.4.5 Low-Frequency Modes ................................ 61
2.5 Phonon Renormalization Due to Electron and Hole Doping
of Graphene ............................................... 61
2.5.1 Optical Phonon Mixing in Doped Bi- and Multilayer
Graphene ........................................... 66
2.5.2 Charge Inhomogeneity and p-n Junction in the FET
Channel Probed by Raman Spectroscopy ............... 68
2.6 Raman Spectroscopy of Graphene Edges and Graphene
Nanoribbons ............................................... 70
2.6.1 Effect of the Edge Orientation on the G-Band ....... 70
2.6.2 Effect of the Edge Orientation on the D-Band ....... 72
2.6.3 Raman Spectroscopy of Graphene Nanoribbons ......... 73
2.7 Effect of Disorder on the Raman Spectrum of Graphene ...... 74
2.8 Raman Spectroscopy of Graphene under Strain ............... 77
2.9 Temperature and Pressure Dependence of Raman Modes in
Graphene as Nanometrological Tools ........................ 83
2.10 Tip-Enhanced Raman Spectroscopy of Graphene Layers ........ 85
2.11 Conclusions 86 Acknowledgments ............................ 87
References ................................................ 87
3 Physics of Quanta and Quantum Fields in Craphene .......... 91
Ganapathy Baskaran
3.1 Introduction .............................................. 91
3.2 Dirac Theory in 3 + 1 Dimensions: A Review ................ 93
3.3 Band Structure of Graphene: Massless Chiral Dirac
Electrons in 2 + 1 Dimensions ............................. 95
3.3.1 Phase Vortices of Bloch States in k-Space .......... 99
3.4 Anomaly - A Brief Introduction ........................... 100
3.4.1 Anomalous Commutator in (1 + 1) Dimensions ........ 101
3.4.2 Axial Anomaly in (1 + 1), (3 + 1) Dimensions ...... 102
3.5 Graphene and 2 + 1-Dimensional Parity Anomaly ............ 105
3.6 Zitterbewegung ........................................... 107
3.7 Klein Paradox ............................................ 110
3.8 Relativistic-Type Effects and Vacuum Collapse in
Graphene in Crossed Electric and Magnetic Fields ......... 111
3.9 Prediction of Spin-1 Quanta from Resonating Valence
Bond Correlations ........................................ 116
3.10 Majorana Zero Mode from Two-Channel Kondo Effect in
Graphene ................................................. 120
3.11 Lattice Deformation as Gauge Fields ...................... 125
3.12 Summary .................................................. 127
Acknowledgment ........................................... 127
References ............................................... 127
4 A Magnetism of Nanographene .............................. 131
Toshiaki Enoki
4.1 Introduction ............................................. 131
4.2 Theoretical Background of Magnetism in Nanographene and
Graphene Edges ........................................... 134
4.3 Experimental Approach to Magnetism of Nanographene ....... 139
4.3.1 Magnetic Structure of Edge-State Spins in
Nanographene ...................................... 139
4.3.2 Magnetism of σ-Dangling Bond Defects in
Graphene .......................................... 143
4.4 Magnetic Phenomena Arising in the Interaction with
Guest Molecules in Nanographene-Based Nanoporous
Carbon ................................................... 146
4.4.1 Magnetic Switching Phenomenon ..................... 146
4.4.2 Helium Sensor ..................................... 152
4.5 Summary .................................................. 154
Acknowledgment ........................................... 155
References ............................................... 155
5 Physics of Electrical Noise in Craphene .................. 159
Vidya Kochat, Srijit Goswami, Atindra Nath Pal, and
Arindam Ghosh
5.1 Introduction ............................................. 159
5.1.1 Single-Layer Graphene ............................. 159
5.1.1.1 Effective Tight-Binding Hamiltonian:
Sublattice and Valley Symmetry ........... 161
5.1.1.2 Valley and Sublattice Pseudospin ......... 161
5.1.1.3 Chirality ................................ 162
5.1.1.4 Berry Phase and Absence of
Backscattering ........................... 162
5.1.2 Bilayer Graphene .................................. 163
5.1.2.1 Biased Bilayer Graphene .................. 164
5.1.3 Multilayer Graphene ............................... 165
5.1.4 Disorder and Scattering Mechanism in Graphene ..... 166
5.1.4.1 Coulomb Impurity Scattering .............. 167
5.1.4.2 Phonon Scattering ........................ 169
5.1.4.3 Electron-Hole Puddles at Low Density ..... 169
5.2 Flicker Noise or "1/" Noise in Electrical Conductivity
of Graphene .............................................. 169
5.2.1 Microscopic Origin of 1/ Noise in Graphene ....... 173
5.2.2 Effect of Bandgap on Low-Frequency Noise in
Bilayer Graphene .................................. 175
5.2.3 Shot Noise in Graphene ............................ 178
5.3 Noise in Quantum Transport in Graphene at Low
Temperature .............................................. 179
5.3.1 Quantum Transport in Mesoscopic Graphene .......... 179
5.3.2 Universal Conductance Fluctuations in Graphene .... 184
5.4 Quantum-Confined Graphene ................................ 188
5.4.1 ID Graphene-Nanoribbons (GNRs) .................... 188
5.5 Conclusions and Outlook .................................. 193
References ............................................... 193
6 Suspended Craphene Devices for Nanoelectromechanics and
for the Study of Quantum Hall Effect ..................... 197
Vibhor Singh and Mandar M. Deshmukh
6.1 Introduction ............................................. 197
6.2 Quantum Hall Effect in Graphene .......................... 198
6.3 Fabrication of Suspended Graphene Devices ................ 200
6.4 Nanoelectromechanics Using Suspended Graphene Devices .... 201
6.5 Using Suspended Graphene NEMS Devices to Measure
Thermal Expansion of Graphene ............................ 203
6.6 High-Mobility Suspended Graphene Devices to Study
Quantum Hall Effect ...................................... 206
Acknowledgments .......................................... 208
References ............................................... 208
7 Electronic and Magnetic Properties of Patterned
Nanoribbons: A Detailed Computational Study .............. 211
Biplab Sanyal
7.1 Introduction ............................................. 211
7.2 Experimental Results ..................................... 212
7.3 Theory of GNRs ........................................... 214
7.3.1 Tight-Binding Method .............................. 214
7.3.2 First Principles Studies .......................... 217
7.4 Hydrogenation at the Edges ............................... 219
7.4.1 Stability of Nanoribbons .......................... 219
7.4.2 Dihydrogenated Edges .............................. 219
7.5 Novel Properties ......................................... 226
7.6 Outlook .................................................. 231
Acknowledgements ......................................... 231
References ............................................... 231
8 Stone-Wales Defects in Craphene and Related Two-
Dimensional Nanomaterials ................................ 235
Sharmila N. Shirodkar and Umesh V. Waghmare
8.1 Introduction ............................................. 235
8.2 Computational Methods .................................... 236
8.3 Graphene: Stone-Wales (SW) Defects ....................... 237
8.3.1 Structural, Electronic, Magnetic, and
Vibrational Properties of Graphene with SW
Defect ............................................ 238
8.3.1.1 Structural Changes at an SW Defect ....... 238
8.3.1.2 Interaction between SW Defects ........... 239
8.3.1.1 Electronic Structure of Graphene and
Effects of SW Defects .................... 239
8.3.1.4 Magnetization due to Topological
Defects .................................. 245
8.3.1.5 Effects on Vibrational Properties ........ 246
8.3.2 Lattice Thermal Conductivity of Graphene with SW
Defect ............................................ 252
8.3.2.1 Theoretical Model ........................ 252
8.3.2.2 к: Results ............................... 253
8.3.3 Discussion ........................................ 254
8.4 C1-x(BN)x/2: C-BN Interfaces .............................. 255
8.4.1 SW Defect at the C-BN Interface ................... 256
8.4.2 Discussion ........................................ 259
8.5 Two-Dimensional MoS2 and MoSe2 ........................... 259
8.5.1 Point Defects ..................................... 259
8.5.2 Stacking Faults ................................... 261
8.5.3 IR Radiation Absorption ........................... 261
8.5.4 Discussion ........................................ 265
8.6 Summary .................................................. 265
Acknowledgments .......................................... 266
References ............................................... 266
9 Graphene and Graphene-Oxide-Based Materials for
Electrochemical Energy Systems ........................... 269
Ganganahalli Kotturappa Ramesha and Srinivasan Sampath
9.1 Introduction ............................................. 269
9.2 Graphene-Based Materials for Fuel Cells .................. 270
9.2.1 Graphene-Based Catalyst Support for Small
Molecule Redox Reactions .......................... 271
9.2.2 Graphene-Oxide-Based Proton Conducting
Membranes ......................................... 278
9.2.3 Graphene-Based Biofuel Cells ...................... 279
9.3 Graphene-Based Supercapacitors ........................... 280
9.4 Graphene in Batteries .................................... 289
9.5 Conclusions and Future Perspectives ...................... 296
References ............................................... 297
10 Heterogeneous Catalysis by Metal Nanoparticles
Supported on Craphene .................................... 303
M. Samy El-Shall
10.1 Introduction ............................................. 303
10.2 Synthesis of Graphene and Metal Nanoparticles Supported
on Graphene .............................................. 304
10.2.1 Chemically Converted Graphene by Microwave-
Assisted Chemical Reduction of Graphene Oxide ..... 304
10.2.1.1 Metal Nanoparticles Supported on
Graphene by Microwave Synthesis .......... 307
10.2.2 Laser-Converted Graphene by Laser Reduction of
Graphene Oxide .................................... 308
10.2.2.1 Laser-Assisted Photoreduction of
Graphene Oxide in Different Solvents ..... 313
10.2.3 Photochemical Reduction of Metal Ions and
Graphene Oxide .................................... 315
10.2.3.1 Photoreduction of Gold Ions and GO in
Different Solvents ....................... 315
10.2.3.2 Photoreduction of Silver Ions and GO in
Different Solvents ....................... 316
10.2.3.3 Mechanism of Photocatalytic Reduction .... 318
10.3 Pd/Graphene Heterogeneous Catalysts for Carbon-Carbon
Cross-Coupling Reactions ................................. 319
10.3.1 Pd/Graphene Catalysts Prepared by Microwave-
Assisted Chemical Reduction of GO ................. 319
10.3.1.1 Catalytic Activity and Range of Utility .. 320
10.3.1.2 Catalyst Recyclability ................... 322
10.3.2 Pd/PRGO Catalysts Prepared by Laser Partial
Reduction of GO ................................... 323
10.3.2.1 Laser Synthesis of Pd Nanoparticles on
Structural Defects in Graphene ........... 323
10.3.2.2 Mechanism of Partial Reduction of GO
and Defect Generation .................... 325
10.3.2.3 Application of Pd/PRGO Nanocatalysts to
Suzuki Reaction .......................... 326
10.3.2.4 Recyclability of the Pd/PRGO
Nanocatalysts in Suzuki Reaction ......... 328
10.3.2.5 Applications of the Pd/PRGO Catalyst A
to Heck and Sonogashira Reactions ........ 329
10.4 CO Oxidation by Transition-Metal/Metal-Oxide
Nanoparticles Supported on Graphene ...................... 330
10.5 Conclusions and Outlook .................................. 334
Acknowledgment ........................................... 335
References ............................................... 335
11 Craphenes in Supramolecular Cels and in Biological
Systems .................................................. 339
Santanu Bhattacharya and Suman K. Samanta
11.1 Introduction ............................................. 339
11.1.1 Overview of 2D-Nanomaterials ...................... 339
11.1.2 Overview of Physical Gels ......................... 339
11.1.3 Different Types of Graphenes, Their Preparation,
Functionalization, and Gelation ................... 340
11.2 Toward the Gelation of GO ................................ 341
11.2.1 Effect of pH on the Gelation of GO ................ 342
11.2.2 Effect of the Dimension of GO toward Gelation ..... 343
11.2.3 Cross-Linker (Small Molecule/PolymerJ-Induced GO
Gels .............................................. 343
11.2.4 Cation-Induced GO Gels ............................ 345
11.2.5 Surfactant-Induced GO Gels ........................ 346
11.2.6 Ionic-Liquid-Induced GO Gels ...................... 347
11.2.7 Gelation of Hemoglobin by GO and Sensing .......... 347
11.2.8 Gelation of DNA by GO with Dye-Absorption and
Self-Healing Properties ........................... 348
11.2.9 Gelation-Assisted Isolation of Graphene from
Graphene-GO Mixture ............................... 350
11.3 Polymer-Assisted Formation of Multifunctional Graphene
Gels ..................................................... 350
11.3.1 Thermal and pH Regulated GO-Polymer Hydrogels ..... 351
11.3.2 Gelation-Assisted Polymer Nanocomposites .......... 351
11.3.3 Mechanical Properties of GO-Polymer Hydrogels ..... 353
11.3.4 Electrical Properties of GO-Polymer Hydrogels ..... 354
11.3.5 Multifunctional GO Hydrogels ...................... 354
11.3.6 Stimuli-Responsive Hydrogels and Their
Applications ...................................... 355
11.4 Graphene Aerogels ........................................ 356
11.5 Hydrogel and Organogel as the Host for the
Incorporation of Graphene ................................ 358
11.6 Biological Applications Involving Graphene ............... 360
11.7 Conclusions and Future Directions ........................ 368
References ............................................... 370
12 Biomedical Applications of Graphene: Opportunities and
Challenges ............................................... 373
Manzoor Koyakutty, Abhilash Sasidharan, and Shantikumar
Nair
12.1 Introduction ............................................. 373
12.2 Summary of Physical and Chemical Properties of
Graphene ................................................. 374
12.2.1 Surface Chemistry (Biochemistry of Graphene) ...... 374
12.2.1.1 Interaction of Graphene Surfaces with
Biomolecules .................................... 374
12.3 Cellular Uptake, Biodistribution, and Clearance .......... 376
12.3.1 Influence of Surface Chemistry on Uptake .......... 376
12.3.2 Uptake of Graphene by Macrophages ................. 377
12.4 Toxicity of Graphene ..................................... 379
12.4.1 Macrophage Toxicity ............................... 380
12.4.2 Hemocompatibility ................................. 381
12.4.2.1 Hemolysis ................................ 381
12.4.2.2 Effect on Hemostasis: Platelet
Activation and Aggregation ............... 382
12.4.2.3 Effect on Plasma Coagulation ............. 384
12.4.3 Inflammatory Response ............................. 384
12.4.3.1 Immune Cell Stimulation and
Suppression .............................. 386
12.4.4 Toxicity Mechanisms ............................... 387
12.4.4.1 Intracellular ROS and Apoptosis in
Macrophages .............................. 388
12.5 Mitigation of Toxicity by Surface Modifications .......... 390
12.6 In vivo Toxicity ......................................... 391
12.7 Potential Application Areas: Opportunities ............... 395
12.7.1 Drag Delivery ..................................... 395
12.7.2 Gene Delivery ..................................... 397
12.7.3 Biosensing Using Graphene ......................... 399
12.7.4 Graphene for Cellular Imaging ..................... 401
12.7.5 Graphene for Tissue Engineering ................... 402
12.7.6 Anticancer Therapy: Photothermal Ablation of
Cancer ............................................ 403
12.8 Conclusions .............................................. 404
References ............................................... 405
Index ......................................................... 409
|