Edelsbrunner H. Computational topology: an introduction (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаEdelsbrunner H. Computational topology: an introduction / H.Edelsbrunner, J.L.Harer. - Providence: AMS, 2010. - xii, 241 p.: ill. - (Applied mathematics). - Bibliogr.: p.227-233. - Ind.: p.235-241. - ISBN 978-0-8218-4925-5
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
A Computational Geometric Topology .............................. 1

I  Graphs ....................................................... 3
1.1  Connected Components ....................................... 3
1.2  Curves in the Plane ........................................ 9
1.3  Knots and Links ........................................... 13
1.4  Planar Graphs ............................................. 18
Exercises ...................................................... 24

II  Surfaces ................................................... 27
II.1   2-dimensional Manifolds ................................. 27
11.2  Searching a Triangulation ................................ 33
11.3  Self-intersections ....................................... 37
11.4  Surface Simplification ................................... 42
Exercises ...................................................... 47

III  Complexes ................................................. 51
III.1  Simplicial Complexes .................................... 51
III.2  Convex Set Systems ...................................... 57
III.3  Delaunay Complexes ...................................... 63
III.4  Alpha Complexes ......................................... 68
Exercises ...................................................... 74


В  Computational Algebraic Topology ............................ 77

IV  Homology ................................................... 79
IV.1  Homology Groups .......................................... 79
IV.2  Matrix Reduction ......................................... 85
IV.3  Relative Homology ........................................ 90
IV.4  Exact Sequences .......................................... 95
Exercises ..................................................... 101

V  Duality .................................................... 103
V.l  Cohomology ............................................... 103
V.2  Poincare Duality ......................................... 108
V.3  Intersection Theory ...................................... 114
V.4  Alexander Duality ........................................ 118
Exercises ..................................................... 123

VI  Morse Functions ........................................... 125
VI.l  Generic Smooth Functions ................................ 125
VI.2  Transversality .......................................... 130
VI.3  Piecewise Linear Functions .............................. 135
VI.4  Reeb Graphs ............................................. 140
Exercises ..................................................... 145

С   Computational Persistent Topology ......................... 147

VII  Persistence .............................................. 149
VII.1  Persistent Homology .................................... 149
VII.2  Efficient Implementations .............................. 156
VII.3  Extended Persistence ................................... 161
VII.4  Spectral Sequences ..................................... 166
Exercises ..................................................... 171

VIII  Stability ............................................... 175
VIII.l  1-parameter Families .................................. 175
VIII.2  Stability Theorems .................................... 180
VIII.3  Length of a Curve ..................................... 185
VIII.4  Bipartite Graph Matching .............................. 191
Exercises ..................................................... 197

IX  Applications .............................................. 199
IX.1  Measures for Gene Expression Data ....................... 199
IX.2  Elevation for Protein Docking ........................... 206
IX.3  Persistence for Image Segmentation ...................... 213
IX.4  Homology for Root Architectures ......................... 218
Exercises ..................................................... 224

References .................................................... 227
Index ......................................................... 235


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:56 2019. Размер: 7,754 bytes.
Посещение N 1214 c 14.10.2014