Chubb D.L. Fundamentals of thermophotovoltaic energy conversion (Amsterdam; Oxford, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаChubb D.L. Fundamentals of thermophotovoltaic energy conversion. - Amsterdam; Oxford: Elsevier, 2007. - xiii, 515 p.: ill. + 1 CD-ROM. - Incl. bibl. ref. - Ind.: p.513-515. - Пер. загл.: основы термофотоэлектрического преобразования энергии. - ISBN 978-0-444-52721-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Chapter 1. Introduction
1.1  Symbols .................................................... 1
1.2  Thermphotovoltaic (TPV) Energy Conversion Concept .......... 3
1.3  A Short History of TPV Energy Conversion ................... 3
1.4  TPV Applications ........................................... 5
1.5  Propagation of Electromagnetic Waves ....................... 6
     1.5.1  Plane Wave Solution to Maxwell's Equations .......... 6
     1.5.2  Energy Flux for Plane Electromagnetic Waves ........ 14
     1.5.3  Boundary Conditions at an Interface ................ 17
     1.5.4  The Law of Reflection and Snell's Law of
            Refraction ......................................... 20
     1.5.5  Reflectivity and Transmissivity at an Interface .... 25
     1.5.6  Connections between Electromagnetic Theory and
            Radiation Transfer Theory .......................... 34
1.6  Introduction to Radiation Transfer ........................ 35
     1.6.1  Radiation Intensity ................................ 35
     1.6.2  Blackbody .......................................... 38
     1.6.3  Blackbody Spectral Emissive Power .................. 39
     1.6.4  Blackbody Total Emissive Power ..................... 42
     1.6.5  Equations for Radiation Energy Transfer ............ 44
     1.6.6  Energy Conservation Including Radiation ............ 47
1.7  Optical Properties ........................................ 50
     1.7.1  Emittance and Absorptance .......................... 51
     1.7.2  Hemispherical Spectral and Hemispherical Total
            Reflectivity ....................................... 55
     1.7.3  Independence of Emitted (Absorbed), Reflected,
            and Transmitted Radiation .......................... 57
1.8  Radiation Energy Balance for One Dimensional Model ........ 63
1.9  Emittance of a Metal into a Dielectric .................... 66
1.10 Summary ................................................... 70
     References ................................................ 71
     Problems .................................................. 72

Chapter 2. Maximum Efficiency and Power Density for TPV
Energy Conversion
2.1  Symbols ................................................... 77
2.2  Maximum TPV Efficiency .................................... 79
2.3  Maximum TPV Efficiency for Constant Emitter Emittance
     and PV Cell Reflectance ................................... 83
2.4  Ideal TPV System .......................................... 84
2.5  Approximation of Selective Emitter and Filter TPV
     Systems ................................................... 86
2.6  Power Output .............................................. 89
2.7  Summary ................................................... 91
     References ................................................ 92
     Problems .................................................. 92

Chapter 3. Emitter Performances
3.1  Symbols ................................................... 95
3.2  Gray Body Emitters ........................................ 97
3.3  Selective Emitters ........................................ 98
     3.3.1  Rare Earth Selective Emitters ...................... 99
     3.3.2  Other Selective Emitters .......................... 102
3.4  Extinction Coefficient and Optical Depth ................. 104
3.5  Extinction Coefficients of Rare Earth Selective
     Emitters ................................................. 105
3.6  Coupled Energy Equation and Radiation Transfer Equation
     for a Solid Material ..................................... 108
3.7  One Dimensional Radiation Transfer Equations ............. 108
     3.7.1  One Dimensional Source Function Equation .......... 112
     3.7.2  One Dimensional Radiation Flux .................... 113
     3.7.3  No Scattering Medium .............................. 114
3.8  Spectral Emittance for Planar Emitter .................... 115
     3.8.1  No Scattering Spectral Emittance .................. 128
     3.8.2  No Scattering, Linear Temperature Variation
            Spectral Emittance ................................ 131
     3.8.3  Importance of Temperature Change Across Planar
            Emitter ........................................... 140
     3.8.4  Effect of Scattering on Spectral Emittance of
            a Planar Emitter .................................. 142
3.9  Cylindrical Emitter ...................................... 146
3.10 Emitter Performance ...................................... 153
     3.10.1 Gray Body Emitter Performance ..................... 154
     3.10.2 Selective Emitter Performance ..................... 157
     3.10.3 Cylindrical Selective Emitter Performance ......... 157
     3.10.4 Planar Selective Emitter Performance .............. 164
3.11 Comparison of Selective Emitters and Gray Body Emitters .. 170
3.12 Summary .................................................. 172
     References ............................................... 174
     Problems ................................................. 175

Chapter 4. Optical Filters for Thermophotovoltaics
4.1  Symbols .................................................. 179
4.2  Filter Performance Parameters ............................ 181
4.3  Interference Filters ..................................... 183
     4.3.1  Introduction ...................................... 183
     4.3.2  Interference ...................................... 183
     4.3.3  Interference Filter Model ......................... 185
     4.3.4  Reflectance, Transmittance, and Absorptance ....... 193
     4.3.5  Single Film System ................................ 198
     4.3.6  Many Layer System for Φi = Nπ or Φi = Nπ/2
            and N is an Odd Integer ........................... 210
     4.3.7  Equivalent Layer Procedure ........................ 214
     4.3.8  Interference Filter with Embedded Metallic Layer .. 222
     4.3.9  Interference Filter Performance for Angles of
            Incidence Greater than Zero ....................... 229
4.4  Plasma Filters ........................................... 232
     4.4.1  Drude Model ....................................... 232
     4.4.2  Reflectance, Transmittance, and Absorptance of
            a Plasma Filter ................................... 244
     4.4.3  Efficiency and Total Transmittance, Reflectance,
            and Absorptance of a Plasma Filter ................ 249
4.5  Combined Interference-Plasma Filter ...................... 253
4.6  Resonant Array Filters ................................... 260
     4.6.1  Transmission Line Theory .......................... 261
     4.6.2  Transmission Line Equivalent Circuit for
            Resonant Array Filter ............................. 266
     4.6.3  Metallic Mesh Filter .............................. 270
4.7  Spectral Control Using a Back Surface Reflector (BSR) .... 277
     4.7.1  Efficiency of a Back Surface Reflector (BSR)
            for Spectral Control .............................. 277
4.8  Summary .................................................. 283
     References ............................................... 284
     Problems ................................................. 286

Chapter 5. Photovoltaic Cells
5.1  Symbols .................................................. 291
5.2  Energy Bands (Kronig-Penney Model) and Current
     in Semiconductors ........................................ 294
5.3  Density of Electrons and Holes and Mass Action Law ....... 302
5.4  Transport Equations ...................................... 310
5.5  Generation and Recombination of Electrons and Holes ...... 313
     5.5.1  Generation of Electrons and Holes ................. 313
     5.5.2  Recombination of Electrons and Holes .............. 316
5.6  p-n Junction ............................................. 320
5.7  Current-Voltage Relation for an Ideal Junction in the
     Dark ..................................................... 323
     5.7.1  Assumptions for Ideal p-n Junction ................ 324
     5.7.2  Current-Voltage Relation for Infinite Neutral
            Regions ........................................... 326
     5.7.3  Current-Voltage Relation for Finite Neutral
            Regions ........................................... 330
     5.7.4  Depletion Region Contribution to Current and
            High-Injection Effects ............................ 336
5.8  Ideality Factor and Empirical Current-Voltage Relation
     of p-n Junction in the Dark .............................. 338
5.9  Current-Voltage Relation for an Ideal p-n Junction
     Under Illumination ....................................... 339
     5.9.1  Electron Current Density in p Region .............. 340
     5.9.2  Hole Current Density in n Region .................. 349
     5.9.3  Current Generation in Depletion Region ............ 357
     5.9.4  Current-Voltage Relation .......................... 359
5.10 Quantum Efficiency and Spectral Response ................. 362
5.11 Equivalent Circuit for PV Cells .......................... 368
5.12 PV Cell Efficiency and Power Output ...................... 374
5.13 Summary .................................................. 388
     References ............................................... 391
     Problems ................................................. 392

Chapter 6. Governing Equations for Radiation Fluxes in
Optical Cavity
6.1  Symbols .................................................. 395
6.2  Radiation Transfer Theory ................................ 397
     6.2.1  Radiation Transfer for Uniform Intensity .......... 397
     6.2.2  View-Factors for TPV Systems ...................... 399
     6.2.3  Optical Properties of Components .................. 405
     6.2.4  Energy Balance on a Component of a TPV System ..... 410
6.3  Radiation Energy Transfer in Planar TPV System ........... 413
6.4  Radiation Energy Transfer in Cylindrical TPV System ...... 417
6.5  Efficiency of TPV Systems ................................ 422
     6.5.1  Overall Efficiency ................................ 422
     6.5.2  Thermal Efficiency ................................ 422
     6.5.3  Cavity Efficiency ................................. 422
     6.5.4  Photovoltaic Efficiency ........................... 423
6.6  Summary .................................................. 423
     References ............................................... 424
     Problems ................................................. 424

Chapter 7. Radiation Losses in Optical Cavity
7.1  Symbols .................................................. 427
7.2  Cavity Efficiency for Planar Filter and Selective
     Emitter TPV Systems without a Window ..................... 428
7.3  Cavity Efficiency for Cylindrical Filter and Selective
     Emitter TPV Systems without a Window ..................... 440
7.4  Cavity Efficiency for TPV Systems with Reflectivity End
     Caps ..................................................... 446
     7.4.1  Development of Radiation Transfer Equations ....... 446
     7.4.2  Radiation Transfer Equations for TPV Systems
            with Close Coupled Emitter-Window and Filter-PV
            Cells ............................................. 450
     7.4.3  Cavity Efficiency ................................. 454
7.5  Summary .................................................. 457
     Problems ................................................. 458

Chapter 8. TPV System Performance
8.1  Symbols .................................................. 461
8.2  TPV System Model ......................................... 462
8.3  Radiation Transfer Equations ............................. 463
8.4  Solution Method for TPV System Model ..................... 468
8.5  Results of TPV System Model for Hypothetical System ...... 472
     8.5.1  Importance of Radiation Leakage ................... 474
     8.5.2  Importance of Filter Absorptance .................. 474
8.6  TPV System with Selective Emitter and Back Surface
     Reflector (BSR) .......................................... 476
     8.6.1  Dependence of TPV Performance upon Input Power .... 479
8.7  Importance of PV Array Temperature on TPV Performance .... 483
8.8  Review of Radiation Transfer Method ...................... 484
8.9  Summary .................................................. 485
     Problems ................................................. 485

Appendices
     Appendix A - Exponential Integrals ....................... 491
     Appendix В - Coupled Energy and Radiation Transfer
                  Equations ................................... 495
     Appendix С - 2 × 2 Matrix Algebra ........................ 499
     Appendix D - Mathematica Program for Multi-layer
                  Interference Filter ......................... 501
     Appendix E - Quantum Mechanics ........................... 503
     Appendix F - Mathematica Program for Planar Geometry
                  TPV Model ................................... 509

Index ......................................................... 513


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:46 2019. Размер: 17,079 bytes.
Посещение N 1446 c 19.08.2014