Preface ....................................................... vii
I Introduction ................................................. 1
Chapter 1 Beginnings ........................................... 3
1.1 Radiation Pressure Using Microwave Magnetrons .............. 3
1.2 Runners and Bouncers ....................................... 3
1.3 Back of the Envelope Calculation of Laser Radiation
Pressure ................................................... 5
1.4 First Observation of Laser Radiation Pressure .............. 7
1.5 Observation of the First Three-Dimensional All-Optical
Trap ...................................................... 10
1.6 Scattering Force on Atoms ................................. 11
1.7 Saturation of the Scattering Force on Atoms ............... 13
1.8 Gradient (Dipole) Force on Atoms ......................... 13
1.9 Dispersive Properties of the Dipole Force on Atoms ........ 14
1.10 Applications of the Scattering Force ...................... 16
1.11 "It's not Even Wrong!" ................................... 16
1.12 Optical Traps and the Prepared Mind ....................... 19
II 1969-1979 .................................................. 21
Chapter 2 Optical Levitation .................................. 23
2.1 Levitation in Air ......................................... 23
2.2 Scientific American Article of 1973 ....................... 27
2.3 Levitation with TEM0i*Donut Mode Beams .................... 28
2.4 Levitation of Liquid Drops ................................ 30
2.5 Radiometric or Thermal Forces ............................. 31
2.6 Levitation at Reduced Air Pressure ........................ 34
2.7 Feedback Damping of Levitated Particles and Automatic
Force Measurement ......................................... 36
2.8 Feedback Measurement of Axial Scattering Force ............ 37
2.9 Feedback Force Measurement of High-Q Surface Wave
Resonances ................................................ 38
2.10 Measurement of Electric Forces by Feedback Control of
Levitated Particles ....................................... 44
Chapter 3 Atom Trapping and Manipulation by Radiation
Pressure Forces ................................................ 47
3.1 Early Concepts and Experiments with Atoms ................. 47
3.1.1 Deflection of atoms by the scattering force ........ 47
3.1.2 Doppler cooling of atoms using the scattering
force and fluctuational heating of atoms ........... 47
3.1.3 Damping of macroscopic particles ................... 50
3.1.4 Saturation of the gradient force on atoms .......... 52
3.1.5 Optimum potential p for a given laser power ........ 55
3.1.6 Conservative and nonconservative properties of
the radiation pressure force components ............ 56
3.1.7 Two-beam optical dipole traps for atoms ............ 58
3.1.8 Single-beam optical dipole trap, or tweezer trap,
for atoms .......................................... 59
3.1.9 Separate trapping and cooling beams and the Stark
shift problem ...................................... 61
3.1.10 First demonstration of the dipole force on atoms
using detuned light ................................ 65
3.1.11 Origin of atom optics .............................. 67
3.2 Theoretical Aspects of Optical Forces on Atoms ............ 68
3.2.1 Quantum theory of "The motion of atoms in
a radiation trap" .................................. 68
3.2.2 Optical Stark shifts and dipole force traps for
atoms .............................................. 69
3.2.3 Optical dipole forces .............................. 70
3.2.4 Conservation of momentum in light scattering by
atoms and sub-micrometer particles ................. 70
Chapter 4 Summary of the First Decade's Work on Optical
Trapping and Manipulation of Particles ......................... 75
III 1980-1990 ................................................. 77
Chapter 5 Trapping of Atoms and Biological Particles in the
1980-1990 Decade ............................................... 79
5.1 Optical Trapping and Cooling of Neutral Atoms in the
Decade 1980-1990 .......................................... 80
5.1.1 Slowing of atomic beams by the scattering force .... 81
5.1.2 Scattering force traps and the optical Earnshaw
theorem ............................................ 81
5.1.3 Arrival of Steve Chu at the Holmdel Laboratory ..... 82
5.1.4 Planning for the first atom trapping experiment .... 83
5.1.5 Stable alternating beam scattering force atom
traps .............................................. 84
5.1.6 First demonstration of optical molasses and early
work on an optical trap ............................ 86
5.1.7 Cooling below the Doppler limit of molasses and
below the recoil limit ............................. 87
5.1.1 Evaporative cooling from optical dipole traps ...... 88
5.1.9 First atom trapping experiment using the single-
beam dipole trap ................................... 91
5.1.10 Proposal for stable spontaneous force light traps .. 93
5.1.11 Nature's comments on the first atom trapping
experiment ......................................... 94
5.1.12 The first experimental demonstration of a MOT ...... 94
5.1.13 Radiation trapping in MOTs ......................... 95
5.1.14 Atom cooling below the Doppler limit ............... 96
5.2 Trapping of Biological Particles .......................... 99
5.2.1 Artificial nonlinear media ........................ 101
5.2.2 Trapping of submicrometer Rayleigh particles ...... 102
5.2.3 Tweezer trapping of micrometer-sized dielectric
spheres ........................................... 103
5.2.4 Optical trapping and manipulation of viruses and
bacteria .......................................... 105
5.2.5 Optical alignment of tobacco mosaic viruses ....... 106
5.2.6 Fixed particle arrays of tobacco mosaic viruses ... 106
5.2.7 Tweezer trapping of bacteria and "opticution" ..... 107
5.2.8 Tweezer trapping of bacteria in
a high-resolution microscope ..................... 109
5.2.9 Optical tweezers using infrared light from
a Nd:YAG laser .................................... 111
5.2.9.1 Damage-free trapping of living cells ..... 1ll
5.2.9.2 Internal cell trapping and manipulation .. 113
5.2.9.3 Separation of bacteria using tweezers .... 114
5.2.9.4 Elastic properties of the cytoplasm ...... 115
IV 1990-2006 ................................................ 117
IVA Biological Applications .................................. 123
Chapter 6 General Biological Applications .................... 125
6.1 Application of Tweezers to the Study of Bacteria ......... 125
6.1.1 Bacteria flagella and bacterial motors ............ 125
6.1.2 Optical manipulation of extremophilia ............ 126
6.1.2.1 Archaea .................................. 126
6.1.2.2 Sequencing of Thermotoga maritima,
a eubacterium ............................ 127
6.1.3 Pilus retraction powers bacterial twitching
motility .......................................... 128
6.1.4 Direct observation of extension and retraction
of type-IV pili ................................... 128
6.1.5 A force-dependent switch reverses type-IV pilus
retraction ........................................ 129
6.1.6 Characterization of photodamage to Escherichia
coli in optical traps ............................. 129
6.2 Use of UV Cutting Plus Tweezers to Study Cell Fusion
and Chromosomes .......................................... 130
6.3 Tweezer Manipulation of Live Sperm and Application to
In Vitro Fertilization ................................... 130
6.4 Tweezer Study of the Immune Response of T-Lymphocytes .... 130
6.5 Adhesion of Influenza Virus to Red Blood Cells Using
OPTCOL Technique ......................................... 131
6.6 Mechanical Properties of Membranes Studied by Tether
Formation ................................................ 131
Using Tweezers ........................................... 131
6.7 Deformation of Single Cells by Light Forces .............. 132
6.8 Artificial Gravity in Plants ............................. 134
6.9 Guiding of Neuronal Growth with Light ................... 135
6.10 Self-Rotation of Red Blood Cells in Optical Tweezers ..... 135
Chapter 7 Use of Optical Tweezers to Study Single Motor
Molecules ..................................................... 137
7.1 In Vivo Force Measurement of Dynein in Giant Amoeba
Reticulomyxa ............................................. 138
7.2 Measurement of the Force Produced by Kinesin ............. 140
7.3 Resolution of the Stepping Motion of Kinesin on
Microtubules by Interferometry ........................... 140
7.4 Observation of Single Stepwise Motion of Muscle
Myosin-II Molecules on Actin Using Feedback and
Tweezers ................................................. 143
7.5 Measurement of Diffusional Motion and Stepping in
Actin-Myosin Interactions ................................ 145
7.6 Measurement of Myosin Step Size Using an Oriented
Single-Headed Molecule ................................... 145
7.7 Forces on Smooth Muscle Myosin and Use of Fluorescently
Labeled ATP with Total Internal Reflection Microscopy .... 145
7.8 Observation of Two-Step Behavior of Myosin I Using
the Tweezer Dumbbell Technique ........................... 147
7.9 Study of Processive Class-V Myosins Using a Pair of
Tweezer Traps ............................................ 148
7.10 Force vs. Velocity Measurement on Kinesin Motor
Molecules ................................................ 148
7.11 Single Enzyme Kinetics of Kinesin ........................ 149
7.12 Kinesin Hydrolyses One ATP Molecule per 8 nm Step ........ 149
7.13 Feedback Control of Tweezers: Force Clamps and Position
Clamps ................................................... 149
7.14 Study of Single Kinesin Molecules with a Force Clamp ..... 150
7.15 Structural Measurements on Kinesin ....................... 152
7.16 Substeps within the 8 nm Step of the ATPase Cycle of
Single Kinesin Molecules ................................. 153
7.17 Processivity of a Single-Headed Kinesin Construct C351
and the Brownian Ratchet ................................. 154
7.18 Myosin VI is a Processive Motor with a Large Step Size ... 156
7.19 Mapping the Actin Filament with Myosin ................... 156
7.20 Development Regulation of Vesicle Transport in
Drosophila Embryos: Forces and Kinetics .................. 157
7.21 Dynein-Mediated Cargo Transport In Vivo: A Switch
Controls Travel Distance ................................. 159
7.22 Kinesin Moves by an Asymmetric Hand-Over-Hand Mechanism .. 160
Chapter 8 Applications to RNA and DNA ........................ 163
8.1 Observation of the Force of an RNA Polymerase Molecule
as it Transcribes DNA .................................... 163
8.2 Force and Velocity Measured for Single Molecules of RNA
Polymerase ............................................... 163
8.3 Measurement of the Mechanical Properties of DNA Polymer
Strands .................................................. 164
8.4 Measurement of Flexural Rigidity of Microtubule Fibers
and Torsional Rigidity of Microtubules and Actin
Filaments ................................................ 165
8.5 Measurement of the Stretching of Double-and Single-
Stranded DNA ............................................. 165
8.6 Polymerization of Ree A Protein on Individual ds DNA
Molecules ................................................ 166
8.7 Study of Elasticity of RecA-DNA Filaments with Constant
Tension Feedback ......................................... 166
8.8 Possible Role of Tweezers in DNA Sequencing .............. 167
8.9 Study of the Structure of DNA and Chromatin Fibers by
Stretching with Light Forces ............................. 168
8.10 Condensation and Decondensation of the Same DNA Molecule
by Protamine and Arginine Molecules ...................... 170
8.11 Non-Mendelian Inheritance of Chloroplast DNA in Living
Algal Cells Using Tweezers .............................. 170
8.12 Measurement of the Force and Mechanical Properties of
DNA Polymerase with Optical Tweezers ..................... 171
8.13 Reversible Unfolding of Single RNA Molecules by
Mechanical Force ......................................... 172
8.14 Grafting of Single DNA Molecules to AFM Cantilevers
Using Optical Tweezers ................................... 173
8.15 Structural Transition and Elasticity from Torque
Measurements on DNA ...................................... 174
8.16 Backtracking by Single RNA Polymerase Molecules
Observed at Near-Base-Pair Resolution .................... 175
8.17 Ubiquitous Transcriptional Pausing is Independent of
RNA Polymerase Backtracking .............................. 176
8.18 RNA Polymerase can Track a DNA Groove During Promoter
Search ................................................... 177
8.19 The Bacterial Condensin MukBEF Compacts DNA into
a Repetitive, Stable Structure ........................... 178
8.20 Forward and Reverse Motion of RecBCD Molecules on DNA .... 179
8.21 Direct Observation of Base-Pair Stepping by RNA
Polymersase .............................................. 179
Chapter 9 Study of the Mechanical Properties of Other
Macromolecules with Optical Tweezers .......................... 181
9.1 Stretching and Relaxation of the Giant Molecule Titin .... 181
9.2 Cell Motility of Adherent Cells Over an Extra-Cellular
Matrix ................................................... 182
9.3 Study of Forces that Regulate the Movement of Plasma
Membrane Proteins ........................................ 184
9.4 Membrane Tube Formation from Giant Vesicles by Dynamic
Association of Motor Proteins ............................ 187
IVB Other Recent Applications in Physics and Chemistry ....... 189
Chapter 10 Origin of Tweezer Forces on Macroscopic Particles
Using Highly Focused Beams .................................... 191
10.1 Origin of the Net Backward Radiation Pressure Force in
Tweezer Traps ............................................ 191
10.2 Light Propagation at the Focus of a High Numerical
Aperture Beam ............................................ 192
10.3 Calculation of the Tweezer Forces on Dielectric
Spheres in the Ray-Optics Regime ......................... 193
10.4 Corrections to Paraxial Ray Approximation for Strongly
Focused Gaussian Beams ................................... 194
10.1 Fifth-Order Corrected Electromagnetic Field Components
for a Focused Fundamental Gaussian Beam .................. 194
10.6 Computation of Net Force and Torque for a Spherical
Particle Illuminated by a Focused Laser Beam ............. 195
10.7 Measurements of the Forces on Microspheres Held by
Optical Tweezers ......................................... 196
10.8 Generalized Lorenz-Mie Theory for Convergent Gaussian
Beams .................................................... 196
10.9 Computation of Backward Radiation Pressure Using GLMT .... 197
10.10 Single-Beam Trapping of Rayleigh and Macroscopic
Particles Using Exact Diffraction Theory ................. 198
10.11 Optical Gradient Forces of Strongly Localized Fields .... 199
10.12 Exact Theory of Optical Tweezers for Macroscopic
Dielectric Spheres ....................................... 200
10.13 Use of Optical Tweezers as a Stylus Support for
Scanning Force Microscopy ................................ 201
10.14 Localized Dynamic Light Scattering ...................... 202
10.15 Thermal Ratchet Motors .................................. 202
10.16 Experimental Test of Kramers' Theory of Thermally
Driven Transition Rates .................................. 203
Chapter 11 Study of Charge-Stabilized Colloidal Suspensions ... 205
11.1 Optically Induced Colloidal Crystals ..................... 205
11.2 Optical Matter: Crystallization and Binding of
Particles in Intense Laser Fields ........................ 206
11.3 Microscopic Measurement of the Pair Interaction of
Charge-Stabilized Colloids Using Tweezers ................ 207
11.4 Theoretical Approaches to the Understanding of Pair
Interactions of Charge-Stabilized Colloids ............... 209
11.5 Confinement-Induced Colloidal Attractions in
Equilibrium .............................................. 210
11.6 Entropie Forces in Binary Colloids ....................... 211
11.7 Entropie Control of Particle Motion Using Passive
Surface Microstructures .................................. 212
11.8 Entropie Attraction and Repulsion in Binary Colloids
Probed with a Line Optical Tweezer ....................... 212
Chapter 12 Rotation of Particles by Radiation Pressure ........ 215
12.1 Optically Induced Rotation of an Anisotropic Micro-
Particle Fabricated by Surface Micromachining ............ 215
12.2 Optically Induced Rotation of a Trapped Micro-Object
about an Axis Perpendicular to the Laser Beam Axis ....... 217
12.3 Optical Microrotors ...................................... 218
12.4 Orbital Angular Momentum ................................. 218
12.5 Observation of Transfer of Angular Momentum to
Absorptive Particles from a Laser Beam with a Phase
Singularity .............................................. 221
12.6 Mechanical Equivalence of Spin and Orbital Angular
Momentum of Light: An Optical Spanner .................... 222
12.7 Controlled Rotation of Optically Trapped Microscopic
Particles ................................................ 223
12.8 Optical Torque Wrench: Angular Trapping, Rotation, and
Torque Detection of Quartz Microparticles ................ 224
Chapter 13 Microchemistry ..................................... 225
13.1 Laser Trapping, Electrochemistry, and Photochemistry of
a Single Microdroplet .................................... 227
13.2 Control of Dye Formation Inside a Single Laser-
Positioned Droplet by Electrolysis ....................... 227
13.3 Laser-Controlled Phase Transitions in PNIPAM and
Reversible Formation of Liquid Drops ..................... 228
Chapter 14 Holographic Optical Tweezers and Fluidic Sorting ... 231
14.1 Nanofabrication with Holographic Tweezers ................ 231
14.2 Dynamic Holographic Tweezers ............................. 231
14.3 Sorting by Periodic Potential Energy Landscapes:
Optical Fractionation .................................... 233
14.4 Optical Peristalsis ...................................... 234
14.5 Microfluidic Sorting in an Optical Lattice ............... 234
14.6 Microfluidic Control Using Colloidal Devices ............ 235
IVC Applications of Atom Trapping and Cooling ................ 237
Chapter 15 Uses of Slow Atoms ................................. 239
15.1 Atomic Clocks Using Slow Atoms .......................... 239
15.2 Atom Optics .............................................. 241
15.2.1 The first guiding and focusing of atoms using
dipole forces ..................................... 241
15.2.2 Lenses based on the scattering force .............. 241
15.2.3 Magneto-optic waveguide and atomic beam
brightness ........................................ 242
15.2.4 Evanescent wave mirrors ........................... 245
15.2.5 Atomic beam splitters ............................. 245
15.2.6 Neutral atom lithography .......................... 245
15.2.7 Atom Interferometers .............................. 245
15.3 Atomic Waveguide Devices ................................. 246
15.3.1 Optical guiding of atoms .......................... 246
15.3.2 Magnetic guiding of atoms near wires .............. 246
15.3.3 Magnetic guiding using atom chips ................. 247
15.3.4 Magnetic guiding around curves .................... 248
15.3.5 Magnetic guides as atomic beam splitters .......... 248
15.4 Cold Atom Collisions ..................................... 249
15.4.1 Photoassociation vs. associative ionization ....... 250
15.4.2 Dark spot MOTs .................................... 252
15.4.3 Scanning photoassociative spectroscopy using
far-off-resonance dipole traps .................... 252
15.4.4 Optical shielding or suppression of trap loss ..... 254
IVD Bose-Einstein Condensation and Related Developments ...... 257
Chapter 16 Introduction to Bose-Einstein Condensation ......... 259
16.1 First Demonstration of ВЕС, Using the TOP Magnetic Trap .. 260
16.2 Bose-Einstein Condensation Using an Optically Plugged
Magnetic Trap ............................................ 262
16.3 Bose-Einstein Condensation Using the "Cloverleaf"
Magnetic Trap ............................................ 263
16.4 Bose-Einstein Condensation in 7Li ........................ 263
16.5 Expanding Bose-Einstein Condensates ...................... 263
16.6 Gross-Pitaevskii Mean Field Theory ....................... 264
16.7 Collective Excitation of a Bose-Einstein Condensate ...... 265
16.8 Coherence of Bose-Einstein Condensates ................... 265
16.8.1 Interference between two condensates .............. 265
16.8.2 Measurement of Ap and the uncertainty principle ... 267
16.8.3 Coherence and interference in the time domain ..... 267
16.8.4 Coherence of atoms tunneling out of arrays ........ 268
16.8.5 Spatial coherence of atoms ejected from a trap .... 268
16.9 Condensate Formation by Bose Stimulation ................. 269
16.10 Atom Lasers ............................................. 269
16.10.1 Pulsed sodium atom laser ......................... 270
16.10.2 cw atom laser ................................... 270
16.10.3 Quasi-continuous atom laser by Raman ejection .... 272
16.10.4 Coherent beams by Bragg scattering .............. 272
16.10.5 Coherent beam generation by four-wave mixing ..... 274
16.10.6 Commentary on Bose-Einstein condensates and
nonlinear matter waves ........................... 276
16.10.7 Two-component Bose-Einstein condensates in 87Rb
and sympathetic cooling .......................... 277
16.10.8 Dynamics of two-component Bose-Einstein
condensates in 87Rb .............................. 277
16.10.9 Phase memory in 87Rb two-component Bose-
Einstein condensates ............................. 278
Chapter 17 Role of All-Optical Traps and MOTs in Atomic
Physics ....................................................... 279
17.1 Far-Off-Resonance Optical Traps for85Rb ................. 280
17.2 Far-Off-Resonance Traps for Cesium Using CO2 Lasers ...... 280
17.3 Evaporative Cooling of Sodium Atoms from an Optical
Dipole Trap .............................................. 282
17.4 Raman Cooling of Trapped Atoms in a Dipole Trap .......... 282
17.5 Laser Noise Heating in Far-Off-Resonance Optical Dipole
Traps .................................................... 282
17.6 Sisyphus Cooling of Cesium in Far-Off-Resonance Optical
Dipole Traps ............................................. 283
17.7 Raman Cooling of Cesium in Far-Off-Resonance Optical
Dipole Traps ............................................. 283
17.8 Two-Step Narrow-Line Cooling of Strontium in Optical
Dipole Traps ............................................. 283
17.9 Continuous Doppler Cooling of Strontium Atoms in an
Optical Dipole Trap ..................................... 285
17.10 Three-Dimensional (3D) Raman Sideband Cooling of
Cesium in Optical Dipole Traps .......................... 286
17.11 Blue-Detuned Optical Dark Traps for Achieving High
Atomic Density ........................................... 287
17.12 Transfer of Bose-Einstein Condensates into Optical
Dipole Traps ............................................. 288
Chapter 18 Spinor Condensates in Optical Dipole Traps ......... 291
18.1 Dynamics of Formation .................................... 291
18.2 Metastable Excited Spin States ........................... 291
18.3 Optical Tunneling of Trapped Spinor States ............... 292
Chapter 19 Feshbach Resonances ................................ 295
19.1 Magnetic Tuning of the Scattering Length in a Dipole
Trap ..................................................... 295
19.2 Magnetic Tuning in Photoassociative Spectroscopy ......... 297
19.3 Feshbach Resonance of Ground State Cesium at Low
Magnetic Field ........................................... 297
19.4 Elastic and Inelastic Collisions Near Feshbach
Resonances in Sodium ..................................... 298
19.5 Suppression of Collision Loss in Cesium Near Feshbach
Resonances ............................................... 299
19.6 Discovery of New Low-Field Feshbach Resonances by
High-Resolution Spectroscopy ............................. 299
19.7 Observation of Optically Induced Feshbach Resonances in
Collisions of Cold Atoms ................................. 301
Chapter 20 Recent Work on Bose-Einstein Condensation .......... 303
20.1 Diffraction of a Released Bose-Einstein Condensate by
a Pulsed Standing Light Wave ............................. 303
20.2 Collective Collapse in a Bose-Einstein Condensate with
Attractive Interactions .................................. 305
20.3 85Rb Bose-Einstein Condensates with Magnetically
Tunable Interactions ..................................... 305
20.4 Bose-Einstein Condensation in Metastable Helium Atoms .... 306
20.5 Observation of Bose-Einstein Condensation Using Optical
Dipole Traps ............................................. 307
20.6 Bose-Einstein Condensation of Potassium Atoms by
Sympathetic Cooling ...................................... 309
20.7 Realization of Bose-Einstein Condensates in Lower
Dimensions ............................................... 310
20.8 Josephson Junction Arrays with Bose-Einstein
Condensates .............................................. 311
20.9 Josephson Effects in Dilute Bose-Einstein Condensates .... 313
20.10 Squeezed States in a Bose-Einstein Condensate ........... 314
20.11 Quantum Phase Transition from a Superfluid to a Mott
Insulator in a Gas of Ultracold Atoms .................... 315
20.12 Bose-Einstein Condensation on a Microelectronic Chip .... 316
20.13 Bose-Einstein Condensates Near a Microfabricated
Surface .................................................. 317
20.14 Tonks-Girardeau ID Gas of Ultracold Atoms ............... 318
20.15 All-Optical Production of a Degenerate Fermi Gas ........ 319
20.16 Bose-Einstein Condensation of Cesium by Evaporative
Cooling from Optical Dipole Traps ........................ 319
20.17 Optimized Production of a Cesium Bose-Einstein
Condensate ............................................... 320
20.18 Cooling Bose-Einstein Condensates Below 500pK ........... 320
20.19 Design for an Optical cw Atom Laser ..................... 320
Chapter 21 Trapping Single Atoms with Single Photons in
Cavity Quantum Electrodynamics ................................ 323
21.1 The Simple One-Atom Maser ................................ 324
21.2 The Two-Photon Maser ..................................... 324
21.3 Trapping Single Atoms in a MOT ........................... 324
21.4 Coupling Single Atoms to a High-Finesse Optical Cavity ... 325
21.5 Coupling of Single Slow Cesium Atoms to a High-Finesse
Optical Cavity ........................................... 325
21.6 Cooling an Atom Strongly Coupled to a High-Я Standing
Wave Cavity .............................................. 325
21.7 Real-Time CQED and Atom Channeling with Single Atoms ..... 326
21.8 Formation of Giant Quasi-Bound Cold Diatoms by Strong
Atom-Cavity Coupling ..................................... 326
21.9 Single Atoms Trapped in Orbit by Single Photons .......... 326
21.10 The Atom Cavity Microscope .............................. 327
21.11 Dynamics of Single Atom Motion in the Field of
a Single Photon ......................................... 328
21.12 Commentary on CQED in Nature's "News and Views" ......... 329
21.13 Experimental Realization of a One-Atom Laser in the
Regime of Strong Coupling ............................... 329
21.14 Cavity Cooling of a Single Atom ......................... 330
21.15 Deterministic Generation of Single Photons from One
Atom Trapped in a Cavity ................................ 330
Chapter 22 Trapping of Single Atoms in an Off-Resonance
Optical Dipole Trap ........................................... 333
22.1 Single Atoms in an Optical Dipole Trap: Towards
a Deterministic Source of Cold Atoms .................... 333
22.2 Sub-Poissonian Loading of Single Atoms in a Microscopic
Dipole Trap .............................................. 334
Chapter 23 Vortices and Frictionless Flow in Bose-Einstein
Condensates ................................................... 337
23.1 Vortices in a Two-Component Bose-Einstein Condensate ..... 337
23.2 Observation of Two-Component Vortices in a Bose-
Einstein Condensate ...................................... 338
23.3 Single-Component Vortices in Bose-Einstein Condensates ... 339
23.4 Single-Component Vortices Generated by an Optical
Stirring Spoon ........................................... 339
23.5 Scissors Mode Excitation of Superfluidity ................ 340
23.6 Suppression and Enhancement of Impurity Scattering in
a Bose-Einstein Condensate ............................... 341
23.7 Hydrodynamic Flow in a Bose-Einstein Condensate Stirred
by a Macroscopic Object .................................. 344
23.8 Observation of Vortex Lattices in Bose-Einstein
Condensates .............................................. 345
23.9 Measurement of the Angular Momentum of a Rotating Bose-
Einstein Condensate ...................................... 346
23.10 Vortex Precession in Bose-Einstein Condensates:
Observations with Filled and Empty Cores ................. 347
23.11 Generating Solitons by Phase Engineering of a Bose-
Einstein Condensate ...................................... 348
Chapter 24 Trapping and Manipulation of Small Molecules
Chapter 24 Trapping and Manipulation of Small Molecules ....... 351
24.1 Deflection of Neutral Molecules Using the Nonresonant
Dipole Force ............................................. 352
24.2 Observation of Optically Trapped Cold Cesium Molecules ... 353
24.3 Magnetic Trapping of Calcium Monohydride Molecules
at mK Temperatures ....................................... 353
24.4 Stimulated Raman Molecule Production in Bose-Einstein
Condensates .............................................. 354
24.5 Optical Centrifuge for Molecules ......................... 354
24.6 Cooling of Molecules by DC Electric Field Gradients ...... 355
24.7 Cooling Molecules by Time-Varying Inhomogeneous Fields
and Expansion from Nozzles ............................... 357
24.8 Electrostatic Trapping of Ammonia Molecules .............. 358
24.9 Creation of Molecules from Atoms in a Bose-Einstein
Condensate ............................................... 359
24.10 Prospects for Trapping and Manipulating Ultracold
Molecules ................................................ 359
24.11 Dynamics of Coupled Atomic and Molecular Bose-Einstein
Condensates .............................................. 360
Chapter 25 Trapped Fermi Gases ................................ 363
25.1 Superfluid State of Atomic 6Li in a Magnetic Trap ........ 363
25.2 Elastic and Inelastic Collisions in 6Li .................. 364
25.3 Sympathetic Cooling of an Atomic Bose-Fermi Gas Mixture .. 365
25.4 Cooper Pair Formation in Trapped Atomic Fermi Gases ...... 366
25.5 Collisional Relaxation in a Fermionic Gas ............... 366
25.6 Observation of Fermi Degeneracy in Trapped 40K Atomic
Gas ...................................................... 367
25.7 Stable, Strongly Attractive Two-State Mixtures of 6Li
Fermions in an Optical Trap .............................. 368
25.8 Observation of Fermi Pressure in a Doubly Degenerate
Gas of Fermions and Bosons ............................... 370
25.9 Observation of a Strongly Interacting Degenerate Fermi
Gas of Atoms ............................................. 371
25.10 Emergence of a Molecular Bose-Einstein Condensate from
a Fermi Gas .............................................. 371
25.11 Observation of Resonance Condensation of Fermionic
Atom Pairs ............................................... 372
25.12 Evidence for Superfluidity in a Resonantly Interacting
Fermi Gas ................................................ 373
25.13 Collective Excitations of a Degenerate Gas at the
BEC-BCS Crossover ........................................ 373
25.14 Observation of the Pairing Gap in a Strongly
Interacting Fermi Gas .................................... 375
25.15 Heat Capacity of a Strongly Interacting Fermi Gas ....... 376
25.16 Commentary on the Search for Superfluidity in Fermi
Gases ................................................... 377
25.17 Vortices and Superfluidity in a Strongly Interacting
Fermi Gas ............................................... 380
25.18 Fermion Pairing in a Gas with Unequal Spin
Populations ............................................. 380
Afterword ............................................... 383
Addendum A: Press Release: The 1997 Nobel Prize in Physics .... 391
А.1 Atoms Floating in Optical Molasses ....................... 391
A.2 Slowing Down Atoms with Photons .......................... 392
A.3 Doppler Cooling and Optical Molasses ..................... 393
A.4 Doppler Limit Broken ..................................... 393
A.5 Recoil Limit also Broken ................................. 394
A 6 Applications Just Round the Corner ....................... 394
Addendum B: Additional background material on the Nobel
Prize in Physics 1997 ......................................... 397
B l Historical Background .................................... 398
B.2 Optical Molasses ......................................... 399
B.3 Sub-Doppler Cooling ...................................... 400
B.4 Sub-Recoil Cooling ....................................... 401
B.5 Applications ............................................. 402
Addendum C: Uproar over Nobel Physics Prize ................... 405
References .................................................... 407
Acknowledgments ............................................... 433
Biography of Arthur Ashkin .................................... 435
List of Reprints .............................................. 439
|