List of Symbols and Abbreviations ............................ XVII
1 Historical Development of Wastewater Collection and
Treatment .................................................... 1
1.1 Water Supply and Wastewater Management in Antiquity ..... 1
1.2 Water Supply and Wastewater Management in the Medieval
Age ..................................................... 4
1.3 First Studies in Microbiology ........................... 7
1.4 Wastewater Management by Direct Discharge into Soil
and Bodies of Water - The First Studies ................ 11
1.5 Mineralization of Organics in Rivers, Soils or by
Experiment - A Chemical or Biological Process? ......... 12
1.6 Early Biological Wastewater Treatment Processes ........ 14
1.7 The Cholera Epidemics - Were They Caused by Bacteria
Living in the Soil or Water? ........................... 16
1.8 Early Experiments with the Activated Sludge Process .... 16
1.9 Taking Samples and Measuring Pollutants ................ 18
1.10 Early Regulations for the Control of Wastewater
Discharge .............................................. 19
References .................................................. 20
2 Wastewater Characterization and Regulations ................. 25
2.1 Volumetric Wastewater Production and Daily Changes ..... 25
2.2 Pollutants ............................................. 27
2.2.1 Survey .......................................... 27
2.2.2 Dissolved Substances ............................ 28
2.2.2.1 Organic Substances ..................... 28
2.2.2.2 Inorganic Substances ................... 30
2.2.3 Colloids ........................................ 32
2.2.3.1 Oil-In-Water Emulsions ................. 32
2.2.3.2 Solid-In-Water Colloids ................ 33
2.2.4 Suspended Solids ................................ 34
2.3 Methods for Measuring Dissolved Organic Substances
as Total Parameters .................................... 34
2.3.1 Biochemical Oxygen Demand ....................... 34
2.3.2 Chemical Oxygen Demand .......................... 36
2.3.3 Total and Dissolved Organic Carbon .............. 37
2.4 Legislation ............................................ 38
2.4.1 Preface ......................................... 38
2.4.2 German Legislation .............................. 38
2.4.2.1 Legislation Concerning Discharge into
Public Sewers .......................... 38
2.4.2.2 Legislation Concerning Discharge into
Waters ................................. 39
2.4.3 EU Guidelines ................................... 41
References .................................................. 42
3 Microbial Metabolism ........................................ 43
3.1 Some Remarks on the Composition and Morphology of
Bacteria (Eubacteria) .................................. 43
3.2 Proteins and Nucleic Acids ............................. 45
3.2.1 Proteins ........................................ 45
3.2.1.1 Amino Acids ............................ 45
3.2.1.2 Structure of Proteins .................. 46
3.2.1.3 Proteins for Special Purposes .......... 47
3.2.1.4 Enzymes ................................ 47
3.2.2 Nucleic Acids ................................... 50
3.2.2.1 Desoxyribonucleic Acid ................. 50
3.2.2.2 Ribonucleic Acid ....................... 54
3.2.2.3 DNA Replication ........................ 57
3.2.2.4 Mutations .............................. 58
3.3 Catabolism and Anabolism ............................... 59
3.3.1 ADP and ATP ..................................... 59
3.3.2 Transport of Protons ............................ 59
3.3.3 Catabolism of Using Glucose ..................... 60
3.3.3.1 Aerobic Conversion by Prokaryotic
Cells .................................. 60
3.3.3.2 Anaerobic Conversion by Prokaryotic
Cells .................................. 65
3.3.4 Anabolism ....................................... 66
References .................................................. 67
4 Determination of Stoichiometric Equations for Catabolism
and Anabolism ............................................... 69
4.1 Introduction ........................................... 69
4.2 Aerobic Degradation of Organic Substances .............. 70
4.2.1 Degradation of Hydrocarbons Without Bacterial
Decay ........................................... 70
4.2.2 Mineralization of 2,4-Dinitrophenol ............. 71
4.2.3 Degradation of Hydrocarbons with Bacterial
Decay ........................................... 74
4.3 Measurement of O2 Consumption Rate rO2,S and CO2
Production Rate rCO2,S .................................. 76
Problems .................................................... 78
References .................................................. 81
5 Gas/Liquid Oxygen Transfer and Stripping .................... 83
5.1 Transport by Diffusion ................................. 83
5.2 Mass Transfer Coefficients ............................. 86
5.2.1 Definition of Specific Mass Transfer
Coefficients .................................... 86
5.2.2 Two Film Theory ................................. 87
5.3 Measurement of Specific Overall Mass Transfer
Coefficients KLa ....................................... 90
5.3.1 Absorption of Oxygen During Aeration ............ 90
5.3.1.1 Steady State Method .................... 90
5.3.1.2 Non-steady State Method ................ 91
5.3.1.3 Dynamic Method in Wastewater Mixed
with Activated Sludge .................. 92
5.3.2 Desorption of Volatile Components During
Aeration ........................................ 93
5.4 Oxygen Transfer Rate, Energy Consumption and
Efficiency in Large-scale Plants ....................... 95
5.4.1 Surface Aeration ................................ 95
5.4.1.1 Oxygen Transfer Rate ................... 95
5.4.1.2 Power Consumption and Efficiency ....... 96
5.4.2 Deep Tank Aeration .............................. 98
5.4.2.1 Preliminary Remarks .................... 98
5.4.2.2 The Simple Plug Flow Model ............. 99
5.4.2.3 Proposed Model of the American
Society of Civil Engineers ............ 101
5.4.2.4 Further Models ........................ 103
5.4.2.5 Oxygen Transfer Rate .................. 103
5.4.2.6 Power Consumption and Efficiency ...... 106
5.4.2.7 Monitoring of Deep Tanks .............. 106
5.5 Dimens ional Analysis and Transfer of Models .......... 108
5.5.1 Introduction ................................... 108
5.5.2 Power Consumption of a Stirred, Non-aerated
Tank - A Simple Example ........................ 109
5.5.3 Description of Oxygen Transfer, Power
Consumption and Efficiency by Surface
Aerators Using Dimensionless Numbers ........... 112
5.5.4 Application of Dimensionless Numbers for
Surface Aeration ............................... 113
Problem ........................................ 115
References ................................................. 117
6 Aerobic Wastewater Treatment in Activated Sludge Systems ... 119
6.1 Introduction .......................................... 119
6.2 Kinetic and Reaction Engineering Models With and
Without Oxygen Limitation ............................. 119
6.2.1 Batch Reactors ................................. 119
6.2.1.1 With High Initial Concentration of
Bacteria .............................. 119
6.2.1.2 With Low Initial Concentration of
Bacteria .............................. 122
6.2.2 Chemostat ...................................... 122
6.2.3 Completely Mixed Activated Sludge Reactor ...... 125
6.2.3.1 Preliminary Remarks ................... 125
6.2.3.2 Mean Retention Time, Recycle Ratio
and Thickening Ratio as Process
Parameters ............................ 126
6.2.3.3 Sludge Age as Parameter ............... 128
6.2.4 Plug Flow Reactor .............................. 130
6.2.5 Completely Mixed Tank Cascades With Sludge
Recycle ........................................ 132
6.2.6 Flow Reactor With Axial Dispersion ............. 134
6.2.7 Stoichiometric and Kinetic Coefficients ........ 136
6.2.8 Comparison of Reactors ......................... 137
6.3 Retention Time Distribution in Activated Sludge
Reactors .............................................. 138
6.3.1 Retention Time Distribution .................... 138
6.3.2 Completely Mixed Tank .......................... 140
6.3.3 Completely Mixed Tank Cascade .................. 140
6.3.4 Tube Flow Reactor With Axial Dispersion ........ 141
6.3.5 Comparison Between Tank Cascades and Tube
Flow Reactors .................................. 142
6.4 Technical Scale Activated Sludge Systems for Carbon
Removal ............................................... 144
Problems ................................................... 146
References ................................................. 149
7 Aerobic Treatment with Biofilm Systems ..................... 151
7.1 Biofilms .............................................. 151
7.2 Biofilm Reactors for Wastewater Treatment ............. 152
7.2.1 Trickling Filters .............................. 152
7.2.2 Submerged and Aerated Fixed Bed Reactors ....... 154
7.2.3 Rotating Disc Reactors ......................... 156
7.3 Mechanisms for Oxygen Mass Transfer in Biofilm
Systems ............................................... 158
7.4 Models for Oxygen Mass Transfer Rates in Biofilm
Systems ............................................... 159
7.4.1 Assumptions .................................... 159
7.4.2 Mass Transfer Gas/Liquid is Rate-limiting ...... 159
7.4.3 Mass Transfer Liquid/Solid is Rate-limiting .... 160
7.4.4 Biological Reaction is Rate-limiting ........... 160
7.4.5 Diffusion and Reaction Inside the Biofilm ...... 160
7.4.6 Influence of Diffusion and Reaction Inside
the Biofilm and of Mass Transfer Liquid/
Solid .......................................... 163
7.4.7 Influence of Mass Transfer Rates at Gas
Bubble and Biofilm Surfaces .................... 164
Problems ................................................... 164
References ................................................. 166
8 Anaerobic Degradation of Organics .......................... 169
8.1 Catabolic Reactions - Cooperation of Different
Groups of Bacteria .................................... 169
8.1.1 Survey ......................................... 169
8.1.2 Anaerobic Bacteria ............................. 169
8.1.2.1 Acidogenic Bacteria ................... 169
8.1.2.2 Acetogenic Bacteria ................... 171
8.1.2.3 Methanogenic Bacteria ................. 171
8.1.3 Regulation of Acetogenics by Methanogenics ..... 173
8.1.4 Sulfate and Nitrate Reduction .................. 175
8.2 Kinetics - Models and Coefficients .................... 176
8.2.1 Preface ........................................ 176
8.2.2 Hydrolysis and Formation of Lower Fatty Acids
by Acidogenic Bacteria ......................... 176
8.2.3 Transformation of Lower Fatty Acids by
Acetogenic Bacteria ............................ 177
8.2.4 Transformation of Acetate and Hydrogen into
Methane ........................................ 179
8.2.5 Conclusions .................................... 180
8.3 Catabolism and Anabolism .............................. 182
8.4 High-rate Processes ................................... 184
8.4.1 Introduction ................................... 184
8.4.2 Contact Processes .............................. 185
8.4.3 Upflow Anaerobic Sludge Blanket ................ 187
8.4.4 Anaerobic Fixed Bed Reactor .................... 188
8.4.5 Anaerobic Rotating Disc Reactor ................ 190
8.4.6 Anaerobic Expanded and Fluidized Bed
Reactors ....................................... 191
Problem .................................................... 192
References ................................................. 193
9 Biodegradation of Special Organic Compounds ................ 195
9.1 Introduction .......................................... 195
9.2 Chlorinated Compounds ................................. 196
9.2.1 Chlorinated n-Alkanes, Particularly
Dichloromethane and 1,2-Dichloroethane ......... 196
9.2.1.1 Properties, Use, Environmental
Problems and Kinetics ................. 196
9.2.1.2 Treatment of Wastewater Containing
DCM or DCA ............................ 198
9.2.2 Chlorobenzene .................................. 200
9.2.2.1 Properties, Use and Environmental
Problems .............................. 200
9.2.2.2 Principles of Biological
Degradation ........................... 200
9.2.2.3 Treatmentof Wastewater Containing
Chlorobenzenes ........................ 202
9.2.3 Chlorophenols .................................. 203
9.3 Nitroaromatics ........................................ 204
9.3.1 Properties, Use, Environmental Problems and
Kinetics ....................................... 204
9.3.2 Treatment of Wastewater Containing 4-NP or
2,4-DNT ........................................ 206
9.4 Polycyclic Aromatic Hydrocarbons and Mineral Oils ..... 206
9.4.1 Properties, Use and Environmental Problems ..... 206
9.4.2 Mineral Oils ................................... 207
9.4.3 Biodegradation of PAHs ......................... 209
9.4.3.1 PAHs Dissolved in Water ............... 209
9.4.3.2 PAHs Dissolved in n-Dodecane
Standard Emulsion ..................... 211
9.5 Azo Reactive Dyes ..................................... 211
9.5.1 Properties, Use and Environmental Problems ..... 211
9.5.2 Production of Azo Dyes in the Chemical
Industry - Biodegradability of Naphthalene
Sulfonic Acids ................................. 213
9.5.3 Biodegradation of Azo Dyes ..................... 215
9.5.3.1 Direct Aerobic Degradation ............ 215
9.5.3.2 Anaerobic Reduction of Azo Dyes ....... 215
9.5.3.3 Aerobic Degradation of Metabolites .... 216
9.5.4 Treatment of Wastewater Containing the Azo
Dye Reactive Black 5 ........................... 216
9.6 Final Remarks ......................................... 217
References ................................................. 218
10 Biological Nutrient Removal ................................ 223
10.1 Introduction .......................................... 223
10.2 Biological Nitrogen Removal ........................... 227
10.2.1 The Nitrogen Cycle and the Technical Removal
Process ........................................ 227
10.2.2 Nitrification .................................. 228
10.2.2.1 Nitrifying Bacteria and
Stoichiometry ......................... 228
10.2.2.2 Stoichiometry and Kinetics of
Nitrification ......................... 231
10.2.2.3 Parameters Influencing
Nitrification ......................... 235
10.2.3 Denitrification ................................ 237
10.2.3.1 Denitrifying Bacteria and
Stoichiometry ......................... 237
10.2.3.2 Stoichiometry and Kinetics of
Denitrification ....................... 239
10.2.3.3 Parameters Influencing
Denitrification ....................... 240
10.2.4 Nitrite Accumulation During Nitrification ...... 242
10.2.5 New Microbial Processes for Nitrogen Removal ... 243
10.3 Biological Phosphorus Removal ......................... 244
10.3.1 Enhanced Biological Phosphorus Removal ......... 244
10.3.2 Kinetic Model for Biological Phosphorus
Removal ........................................ 245
10.3.2.1 Preliminary Remarks ................... 245
10.3.2.2 Anaerobic Zone ........................ 246
10.3.2.3 Aerobic Zone .......................... 247
10.3.3 Results of a Batch Experiment .................. 248
10.3.4 Parameters Affecting Biological Phosphorus
Removal ........................................ 249
10.4 Biological Nutrient Removal Processes ................. 250
10.4.1 Preliminary Remarks ............................ 250
10.4.2 Nitrogen Removal Processes ..................... 250
10.4.3 Chemical and Biological Phosphorus Removal ..... 252
10.4.4 Processes for Nitrogen and Phosphorus
Removal ........................................ 253
10.4.4.1 Different Levels of Performance ....... 253
10.4.4.2 WWTP WaЈmannsdorf ..................... 255
10.4.4.3 Membrane Bioreactors (MBR) ............ 257
10.5 Phosphorus and Nitrogen Recycle ....................... 257
10.5.1 Req'cling of Phosphorus ........................ 257
10.5.2 Recycling of Nitrogen .......................... 258
Problems ................................................... 259
References ................................................. 262
11 Modelling of the Activated Sludge Process .................. 267
11.1 Why We Need Mathematical Models ....................... 267
11.2 Models Describing Carbon and Nitrogen Removal ......... 268
11.2.1 Carbon Removal ................................. 268
11.2.2 Carbon Removal and Bacterial Decay ............. 269
11.2.3 Carbon Removal and Nitrification Without
Bacterial Decay ................................ 270
11.3 Models for Optimizing the Activated Sludge Process .... 271
11.3.1 Preface ........................................ 271
11.3.2 Modelling the Influence of Aeration on Carbon
Removal ........................................ 272
11.3.3 Activated Sludge Model 1 (ASM 1) ............... 275
11.3.4 Application of AS Ml ........................... 283
11.3.5 More Complicated Models and Conclusions ........ 285
Problems ................................................... 286
References ................................................. 288
12 Membrane Technology in Biological Wastewater Treatment ..... 291
12.1 Introduction .......................................... 291
12.2 Mass Transport Mechanism .............................. 293
12.2.1 Membrane Characteristics and Definitions ....... 293
12.2.2 Mass Transport Through Non-porous Membranes .... 296
12.2.3 Mass Transport Through Porous Membranes ........ 300
12.3 Mass Transfer Resistance Mechanisms .................. 301
12.3.1 Preface ........................................ 301
12.3.2 Mass Transfer Resistances ...................... 302
12.3.3 Concentration Polarization Model ............... 303
12.3.4 Solution-diffusion Model and Concentration
Polarization ................................... 306
12.3.5 The Pore Model and Concentration
Polarization ................................... 308
12.4 Performance and Module Design ......................... 308
12.4.1 Membrane Materials ............................. 308
12.4.2 Design and Configuration of Membrane Modules ... 309
12.4.2.1 Preliminary Remarks ................... 309
12.4.2.2 Dead-end Configuration ................ 313
12.4.2.3 Submerged Configuration ............... 314
12.4.2.4 Cross-flow Configuration .............. 314
12.4.3 Membrane Fouling and Cleaning Management ....... 315
12.4.3.1 Types of Fouling Processes ............ 315
12.4.3.2 Membrane Cleaning Strategies .......... 316
12.5 Membrane Bioreactors .................................. 318
12.5.1 Final Treatment (Behind the Secondary
Clarifier) ..................................... 318
12.5.2 Membrane Bioreactors in Aerobic Wastewater
Treatment ...................................... 319
12.5.3 Membrane Bioreactors and Nutrient Removal ...... 323
Problems ................................................... 324
References ................................................. 327
13 Production Integrated Water Management and Decentralized
Effluent Treatment ......................................... 331
13.1 Introduction .......................................... 331
13.2 Production Integrated Water Management in the
Chemical Industry ..................................... 333
13.2.1 Sustainable Development and Process
Optimization ................................... 333
13.2.1.1 Primary Points of View ................ 333
13.2.1.2 Material Flow Management .............. 334
13.2.1.3 Production of Naphthalenedisufonic
Acid .................................. 336
13.2.1.4 Methodology of Process Improvement ........... 338
13.2.2 Minimization of Fresh Water Use ................ 339
13.2.2.1 Description of the Problem ............ 339
13.2.2.2 The Concentration/Mass Flow Rate
Diagram and the Graphical Solution .... 340
13.2.3 The Network Design Method ...................... 344
13.3 Decentralized Effluent Treatment ...................... 346
13.3.1 Minimization of Treated Wastewater ............. 346
13.3.1.1 Description of the Problem ............ 346
13.3.1.2 Representation of Treatment
Processes in a Concentration/Mass
Flow Rate Diagram ..................... 347
13.3.1.3 The Lowest Wastewater Flow Rate
to Treat .............................. 349
13.3.2 Processes for Decentralized Effluent
Treatment ...................................... 349
Problems ................................................... 350
References ................................................. 354
Subject Index ................................................. 355
|