Organ A.J. The air engine: stirling cycle power for a sustainable future (Cambridge; Boca Raton, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаOrgan A.J. The air engine: stirling cycle power for a sustainable future. - Cambridge; Boca Raton: Woodhead publ./CRC press, 2007. - (Woodhead publ. in mechanical engineering). - Bibliogr.: p.262-267. - Ind.: p.268-276. - Пер. загл.: Авиамотор, работающий по циклу Стирлинга. - ISBN 978-1-84569-231-5. - ISBN 978-1-4200-6672-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Notation ....................................................... xi
Preface ...................................................... xvii
Introduction: an invention ahead of its time .................. xxi

Part I  A long-overdue reappraisal
1  The famous engine that never was ............................. 3
   1.1  Status quo .............................................. 3
   1.2  The legend .............................................. 5
   1.3  History reconstructed ................................... 6
   1.4  Exploratory firing tests ................................ 7
   1.5  Reassessment ............................................ 9
   1.6  Postscript ............................................. 10
2  What Carnot efficiency? ..................................... 13
   2.1  Ideal cycle - or perfect alibi ......................... 13
   2.2  What Carnot efficiency? ................................ 14
   2.3  Old heat exchanger, new air pre-heater ................. 15
   2.4  Resources for first-principles gas path design ......... 16
   2.5  A further take on friction factor Cf - and not the
        last ................................................... 22
   2.6  Beyond the sound barrier ............................... 24
   2.7  Geometric descriptors for the wire matrix .............. 25
   2.8  Inconsistencies uncovered .............................. 26
   2.9  Resume ................................................. 27
3  Counter-flow spiral heat exchanger - Spirex ................. 29
   3.1  Heat provision as an integral part of the engine ....... 29
   3.2  Thermal analysis ....................................... 30
   3.3  Heat transfer and flow friction correlations ........... 34
   3.4  Special case of high NTU* .............................. 35
   3.5  Numerical integration .................................. 35
   3.6  Specimen solutions ..................................... 36
   3.7  Discussion ............................................. 37
4  A high-recovery-ratio combustion chamber .................... 39
   4.1  The design problem ..................................... 39
   4.2  Principle .............................................. 40
   4.3  Operation .............................................. 43
   4.4  Materials .............................................. 43
   4.5  Preliminary operating experience ....................... 44
   4.6  Second design iteration ................................ 45

Part II  Living with incompressible flow data
5  The regenerator problem brought down to size ................ 55
   5.1  Background ............................................. 55
   5.2  Assumptions ............................................ 55
   5.3  Defining equations ..................................... 57
   5.4  Boundary conditions .................................... 58
   5.5  Flush ratio ............................................ 59
   5.6  Integration algorithm .................................. 60
   5.7  Specimen temperature profiles .......................... 61
   5.8  Design criterion for NTCR .............................. 61
   5.9  Alternative formulation in corroboration ............... 64
   5.10 Conclusions ............................................ 66

6  The regenerative annulus and shuttle heat transfer .......... 67
   6.1  Introduction ........................................... 67
   6.2  Background ............................................. 68
   6.3  Reformulation .......................................... 69
   6.4  Assumptions ............................................ 69
   6.5  Analysis ............................................... 70
   6.6  Cyclic shuttle loss .................................... 74
7  The rotating-displacer air engine ........................... 77
   7.1  Résumé ................................................. 77
   7.2  An alternative ......................................... 80
   7.3  Taylor parameter ....................................... 84
   7.4  A rotating-displacer air engine ........................ 85
   7.5  Academic design exercise ............................... 89
8  The strange case of the self-regulating air engine .......... 94
   8.1  Background ............................................. 94
   8.2  Some realities ......................................... 95
   8.3  Constructional details ................................. 96
   8.4  Exploratory power and torque measurement ............... 99
   8.5  'Self-regulation' ..................................... 101
   8.6  Tentative explanation ................................. 102
   8.7  Conclusions ........................................... 105
9  Some light on the inner workings of the'thermal lag'
   engine ..................................................... 107
   9.1  The concept ........................................... 107
   9.2  'Thermal lag' engine .................................. 108
   9.3  Ideal gas process sequence ............................ 109
   9.4  A detailed model of the thermal processes ............. 110
   9.5  Limited heat transfer ................................. 120
   9.6  Flow losses ........................................... 123
   9.7  A practical 'thermal lag' engine ...................... 128
   9.8  Preliminary operating experience ...................... 129
   9.9  Afterthought .......................................... 131

Part III Working with the reality of compressible flow
10 New correlations for old ................................... 135
   10.1 Right data - wrong application ........................ 135
   10.2 The misleading Cf - Re correlation .................... 135
   10.3 Flow data acknowledging Ma ............................ 136
   10.4 Dynamic Similarity to the rescue ...................... 140
   10.5 Farewell to friction factor ........................... 142
   10.6 The new format ........................................ 143
   10.7 What the new format reveals about 'incompressible'
        flow data ............................................. 144
   10.8 Epitaph ............................................... 144
11 Regenerator thermal analysis - unfinished business ......... 147
   11.1 Regenerator design in context ......................... 147
   11.2 Assumptions ........................................... 148
   11.3 Modified diffusion law ................................ 149
   11.4 Numerical solution .................................... 151
   11.5 Parameters of operation ............................... 151
   11.6 Pressure and velocity fields .......................... 152
   11.7 Inevitable asymmetry of flow cycle .................... 153
   11.8 Anisotropic matrix .................................... 157
   11.9 Discussion ............................................ 159
12 Flow passage geometry ...................................... 161
   12.1 Scope ................................................. 161
   12.2 Symmetrical gauze - flow perpendicular to plane
        of weave .............................................. 162
   12.3 Flow parallel to plane of weave ....................... 171
   12.4 Commercial availability ............................... 174
   12.5 Specimen isotropic material - metal foam .............. 175
   12.6 Resume ................................................ 177
13 Beyond the performance envelope ............................ 179
   13.1 Introduction .......................................... 179
   13.2 Method of Characteristics ............................. 180
   13.3 'Unit process' of the integration sequence ............ 183
   13.4 High-speed operation - the wave engine ................ 184
   13.5 Discussion ............................................ 189
   Appendix ................................................... 190
14 For the sceptic ............................................ 192
   14.1 What does it all add up to? ........................... 192
   14.2 Flow in the isolated gauze aperture ................... 192
   14.3 Defining equations .................................... 194
   14.4 Radial component of kinetic energy .................... 197
   14.5 The not-so-square-weave wire gauze .................... 198
   14.6 Kinetic energy of rotation ............................ 200
   14.7 'Real' (van der Waals) gas ............................ 201
   14.8 Downstream pressure recovery .......................... 201
   14.9 Simulated correlation Δplp = Δplp(Sg, Ma, γ, dwmw) ... 202
   14.10 Implications for first-principles design ............. 205
   14.11 Resume ............................................... 206

Part IV Some design considerations
15  Scaling - and the neglected art of back-of-the-envelope
   calculation ................................................ 211
   15.1 The overriding objective .............................. 211
   15.2 Gas path scaling - update ............................. 211
   15.3 Back-of-the-envelope Ma and Re in the regenerator ..... 214
   15.4 Limiting Ma ........................................... 217
   15.5 Compressibility vulnerability chart ................... 217
   15.6 Heat transfer ......................................... 220
   15.7 Implications for back-of-envelope design .............. 221
   15.8 A 'screening' test .................................... 224
   15.9 The wider role of scaling ............................. 225
16 'How to make a business out of Stirling engines today' ..... 226
   16.1 Tribal wisdom ......................................... 226
   16.2 From alchemy to appropriate technology ................ 226
   16.3 What else has changed? ................................ 229
   16.4 The VDF-750(aS) ....................................... 231
   16.5 Drive mechanism/kinematics ............................ 235
   16.6 General mechanical construction ....................... 236
   16.7 Pressure-balanced seal ................................ 249
   16.8 Beyond 2006 ........................................... 250

Appendix I Draft patent specification ......................... 252
   What I claim is ............................................ 255
   Abstract ................................................... 256
Appendix II Crank mechanism kinematics ........................ 257
Appendix III Equilibrium or 'temperature-determined'
   picture of thermal lag engine .............................. 260
Appendix IV Tribal wisdom ..................................... 261

References and bibliography ................................... 262
Index ......................................................... 268


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:44 2019. Размер: 14,853 bytes.
Посещение N 1225 c 12.08.2014