Dissertationes mathematicae; 498: Equivalence of multi-norms (Warszawa, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDissertationes mathematicae. 498: Equivalence of multi-norms / H.G.Dales et al.; Institute of Mathematics, Polish Academy of Sciences. - Warszawa: Instytut matematyczny PAN, 2014. - 53, iii p. – Ref.: p.52-53. - Пер. загл.: Эквивалентность мультинорм. - ISSN 0012-3862
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 5
   1.1  Basic notation .......................................... 7
   1.2  Linear and Banach spaces ................................ 7
   1.3  Summing norms and summing operators ..................... 9
   1.4  Tensor norms ........................................... 12
2  Basic facts on multi-normed spaces .......................... 14
   2.1  Multi-normed spaces .................................... 14
   2.2  Multi-norms as tensor norms ............................ 15
   2.3  The (p, q)-multi-norm .................................. 17
   2.4  The (p, p)-multi-norm .................................. 19
   2.5  Relations between (p, g)-multi-norms ................... 19
   2.6  The standard t-multi-norm on Lr-spaces ................. 24
   2.7  The Hilbert multi-norm ................................. 25
   2.8  Relations between multi-norms .......................... 26
3  Comparing (p, g)-multi-norms on Lr spaces ................... 27
   3.1  The case where r = 1 ................................... 27
   3.2  The case where r > 1 ................................... 28
   3.3  The role of Orlicz's theorem ........................... 30
   3.4  Asymptotic estimates ................................... 30
   3.5  Classification theorem ................................. 31
   3.6  The role of Khintchine's inequalities .................. 33
   3.7  Final classification ................................... 35
   3.8  The relation with standard t-multi-norms ............... 38
4  The Hilbert space multi-norm ................................ 39
   4.1  Equivalent norms ....................................... 39
   4.2  Equivalence at level n ................................. 40
   4.3  Calculation of c2 ...................................... 43
   4.4  Calculation of c3 ...................................... 44
   4.5  Calculation of c4 ...................................... 51

References ..................................................... 52


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:40 2019. Размер: 5,826 bytes.
Посещение N 871 c 05.08.2014