Dissertationes mathematicae; 496: Polynomial interpolation and asymptotic representations for zeta functions (Warszawa, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDissertationes mathematicae. 496: Polynomial interpolation and asymptotic representations for zeta functions / M.I.Ganzburg / Institute of Mathematics, Polish Academy of Sciences. - Warszawa: Instytut matematyczny PAN, 2013. - 117, iii p. - Ref.: p.113-115. - Ind.: p.116-117. – Пер. загл.: Полиномиальная интерполяция и асимптотические представления дзета-функций. ISSN 0012-3862
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 6
2  Integral formulae for the interpolation error term ........... 9
   2.1  General formula ......................................... 9
        2.1.1  Definitions and historic remarks ................. 9
        2.1.2  General theorem ................................. 10
        2.1.3  Examples of classes I(T, Z) ..................... 12
   2.2  Interpolation formulae for T = fig.2 and Z = ifig.2 \ {0} ..... 12
        2.2.1  Special case .................................... 12
        2.2.2  Differentiability and continuity properties ..... 13
        2.2.3  Interpolation theorems .......................... 15
        2.2.4  Even and odd functions .......................... 17
   2.3  Interpolation formulae for functions |y|s(sgn y)l 
        logν |y| ............................................... 21
        2.3.1  General nodes ................................... 21
        2.3.2  Symmetric nodes ................................. 25
3  Asymptotic properties of special sequences of polynomials ... 29
   3.1  Three classes of special sequences of polynomials ...... 29
        3.1.1  Class fig.3d(β,γ,δ) ................................. 29
        3.1.2  Class fig.3d*(β,γ,δ) ................................ 30
        3.1.3  Class fig.3d**(β,γ,δ, W, k) ......................... 33
   3.2  Examples of sequences from the classes fig.3d, fig.3d*, and
        fig.3d** ................................................... 35
        3.2.1  Normalised Gegenbauer polynomials on [-1,1] ..... 35
        3.2.2  Normalized Chebyshev polynomials on [-1,1] ...... 36
        3.2.3  Normalized polynomials with equidistant zeros 
               on [-1,1] ....................................... 38
        3.2.4  Normalized Hermite polynomials on (-∞, ∞) ....... 41
        3.2.5  Normalized Williams-Apostol polynomials on
               (-co, oo) ....................................... 43
        3.2.6  Normalized Lommel polynomials on (-∞, ∞) ........ 46
        3.2.7  Normalized Laguerre polynomials on (-∞, ∞) ...... 47
   3.3  Asymptotic formulae for Lp-quasinorms of special 
        polynomials ............................................ 47
        3.3.1  Technical lemma ................................. 47
        3.3.2  Normalized Gegenbauer polynomials on [-1,1] ..... 50
        3.3.3  Normalized even Chebyshev polynomials of the
               first kind on [-1,1] ............................ 54
        3.3.4  Normalized polynomials with equidistant zeros 
               on [-1,1] ....................................... 54
        3.3.5  Normalized Hermite polynomials on (-∞, ∞) ....... 55
        3.3.6  Normalized Williams-Apostol polynomials on
               (-∞, ∞) ......................................... 64
4  Pointwise asymptotic relations between the interpolation 
   error and zeta functions .................................... 65
   4.1  Estimates for integrals ................................ 65
   4.2  Asymptotic relations for ζ(s) and β(s) ................. 69
   4.3  Some corollaries ....................................... 73
   4.4  Asymptotic summation formulae for zeta functions ....... 76
5  Asymptotic relations between the Lp-mterpolation error and 
   zeta functions .............................................. 85
   5.1  Lp-asymptotics for the integral term ................... 85   
   5.2  Lp-asymptotic representations for zeta functions ....... 90
        5.2.1  General theorem ................................. 90
        5.2.2  Examples ........................................ 91
   5.3  Interpolation L-error criteria for ζ0,k(s) ≠ 0 
        and ζ0,k(s) = 0 ........................................ 98
        5.3.1  General L-error criterion ...................... 98
        5.3.2  Special L-error criteria ...................... 100
   5.4  Interpolation Lp-error criteria for Ld,k(s) ≠ 0 and
        ζ0,k(s) = 0 ............................................ 101
        5.4.1  General Lp-error criterion ..................... 101
        5.4.2  Special Lp-error criteria ...................... 101
6  Other applications ......................................... 105
   6.1  Universal exponential sums ............................ 105
   6.2  Functional equations for zeta functions ............... 107
   6.3  Combinatorial representations for Bernoulli and 
        Euler numbers ......................................... 109
   References ................................................. 113

Index ......................................................... 116


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:36 2019. Размер: 9,231 bytes.
Посещение N 1195 c 05.08.2014