1 Laser Isotope Separation in Atomic Vapors .................... 1
1.1 Introduction ............................................ 1
1.2 Brief Description of the AVLIS Process as Applied to
Uranium ................................................. 3
1.3 General Description of the AVLIS Process ................ 4
1.4 Theoretical Description of the AVLIS Process ............ 6
1.4.1 Theoretical Description of the Method for
Incoherent Interaction Between Radiation and
Atoms ............................................ 7
1.4.2 Features of Coherent Two-Photon Excitation ....... 9
1.4.3 Evaporation of Separated Material, Collimation
of an Atomic Beam, and Ion Extraction ........... 10
1.5 Photochemical Laser Isotope Separation in Atomic
Vapors ................................................. 13
1.6 Other Methods of Isotope Separation .................... 15
2 Laser Technique for Isotope Separation ...................... 17
2.1 Introduction ........................................... 17
2.2 General Requirements for a Laser System in the AVLIS
Process ................................................ 18
2.3 Laser Complex .......................................... 21
2.3.1 Pumping Lasers .................................. 21
2.3.2 Tunable Lasers .................................. 25
2.4 Complexes for Laser Isotope Separation ................. 26
3 Chemical Reactions of Atoms in Excited States ............... 39
3.1 General View of Photochemical Reactions ................ 39
3.2 Experimental Study of Photochemical Reactions Between
Atoms and Molecules .................................... 42
3.3 Collisional Quenching of Excited Atomic States by
Molecules .............................................. 46
3.4 Resonance Transfer of Excitation in Collisions ......... 48
3.5 Collisional Processes with Rydberg Atoms ............... 51
3.6 Isotope Exchange Reactions ............................. 55
3.7 Radical Reactions in Collisions ........................ 57
4 Isotope Separation by Single-Photon Isotope-Selective
Excitation of Atom .......................................... 59
4.1 Description of the Method .............................. 59
4.2 Mathematical Model of the Method ....................... 62
4.3 Calculation Results on Isotope-Selective Excitation
of Zinc Atoms .......................................... 66
4.3.1 Transversal Gas Circulation ..................... 67
4.3.2 Longitudinal Gas Circulation .................... 70
4.4 Output Parameters Versus the Detuning of Radiation
Frequency .............................................. 71
4.5 Influence of the Radiation Line Profile on Output
Characteristics of the Separation Process .............. 74
4.6 Experiments on Laser Separation of Zn Isotopes
by the Photochemical Method ............................ 78
4.7 Experiments on Laser Separation of Rubidium Isotopes
by the Photochemical Method ............................ 85
5 Coherent Isotope-Selective Two-Photon Excitation of Atoms ... 91
5.1 Brief Description of Two-Photon Excitation and the
Mathematical Model ..................................... 91
5.2 Two-Photon Excitation of Led Atoms ..................... 93
5.3 Two-Photon Excitation of Boron and Silica Atoms ........ 95
5.4 Photochemical Separation of Zinc Isotopes by Means of
the Two-Photon Excitation ............................. 101
5.4.1 Description of the Method ...................... 101
5.4.2 Polarization of Radiation ...................... 103
5.4.3 Mathematical Model of Cascade
Superluminescence .............................. 205
5.4.4 Calculation Results ............................ 108
5.4.5 Experimental Results ........................... 111
5.5 Zinc Isotope Separation by Evaporating Material from
Chamber Walls ......................................... 115
5.5.1 Problem Statement .............................. 115
5.5.2 Physical Analysis .............................. 128
5.5.3 Calculation Results and Their Analysis ......... 224
5.5.4 Influence of Diffusion Processes on the
Selectivity of Isotope Separation .............. 227
6 Prospects for Industrial Isotope Production by Methods of
Laser Isotope Separation ................................... 232
6.1 Microelectronics and Optoelectronics .................. 133
6.2 Nuclear Fuel Cycle .................................... 235
6.3 Medicine and Biology .................................. 238
7 Appendix A: Mathematical Description of the Processes
Based on Kinetic Equations ................................. 139
8 Appendix B: Operation Features of Copper-Vapor Laser
Complexes .................................................. 141
8.1 Specificity of Creating the Complexes of Copper-
Vapor Lasers .......................................... 141
8.1.1 Specificity of Measuring Laser Radiation
Parameters in CVL Complexes .................... 247
9 Appendix C: Physical and Technical Problems of Increasing
the Power of Copper-Vapor Lasers ........................... 151
10 Appendix D: Neutron Transmutation Doping of Silica ......... 167
11 Appendix E: Employment of Boron Isotopes in
Microelectronics ........................................... 171
12 Appendix F: Employment of Boron in Nuclear Fuel Cycle
Equipment .................................................. 173
References ................................................. 177
Subject Index .............................................. 185
|