Freeden W. Geomathematically oriented potential theory (Boca Raton, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFreeden W. Geomathematically oriented potential theory / W.Freeden, C.Gerhards. - Boca Raton: CRC/Taylor & Francis, 2013. - xi, 452 p.: ill. - (Pure and applied mathematics: a series of monographs and textbooks; vol.304). - Bibliogr.: p.429-447. - Ind.: p.449-452. - Пер. загл.: Геоматематически ориентированная теория потенциала. - ISBN 978-1-4398-9542-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ ix
About the Authors ............................................ xiii
List of Symbols ................................................ xv
Introduction .................................................... 1

I   Preliminaries ............................................... 9
1  Three-Dimensional Euclidean Space fig.13 ........................ 11
   1.1  Basic Notation ......................................... 11
   1.2  Integral Theorems ...................................... 22
   1.3  Exercises .............................................. 27
2  Two-Dimensional Sphere Ω .................................... 29
   2.1  Basic Notation ......................................... 29
   2.2  Integral Theorems ...................................... 35
   2.3  (Scalar) Spherical Harmonics ........................... 42
   2.4  (Scalar) Circular Harmonics ............................ 52
   2.5  Vector Spherical Harmonics ............................. 59
   2.6  Tensor Spherical Harmonics ............................. 69
   2.7  Exercises .............................................. 76

II  Potential Theory in the Euclidean Space fig.13 ................. 81
3  Basic Concepts .............................................. 83
   3.1  Background Material .................................... 83
   3.2  Volume Potentials ...................................... 99
   3.3  Surface Potentials .................................... 103
   3.4  Boundary-Value Problems ............................... 126
   3.5  Locally and Globally Uniform Approximation ............ 152
   3.6  Exercises ............................................. 171
4  Gravitation ................................................ 175
   4.1  Oblique Derivative Problem ............................ 181
   4.2  Satellite Problems .................................... 212
   4.3  Gravimetry Problem .................................... 224
   4.4  Exercises ............................................. 237
5  Geomagnetism ............................................... 243
   5.1  Geomagnetic Background ................................ 243
   5.2  Mie and Helmholtz Decompositions ...................... 248
   5.3  Gauss Representation and Uniqueness ................... 256
   5.4  Separation of Sources ................................. 266
   5.5  Ionospheric Current Systems ........................... 272
   5.6  Exercises ............................................. 283

III  Potential Theory on the Unit Sphere Ω .................... 285
6  Basic Concepts ............................................. 287
   6.1  Background Material ................................... 287
   6.2  Surface Potentials .................................... 293
   6.3  Curve Potentials ...................................... 297
   6.4  Boundary-Value Problems ............................... 316
   6.5  Differential Equations for fig.1* and L* .................. 333
   6.6  Locally and Globally Uniform Approximation ............ 336
   6.7  Exercises ............................................. 342
7  Gravitation ................................................ 347
   7.1  Disturbing Potential .................................. 347
   7.2  Linear Regularization Method .......................... 359
   7.3  Multiscale Solution ................................... 363
   7.4  Exercises ............................................. 381
8  Geomagnetism ............................................... 385
   8.1  Mie and Helmholtz Decomposition ....................... 385
   8.2  Higher-Order Regularization Methods ................... 395
   8.3  Separation of Sources ................................. 404
   8.4  Ionospheric Current Systems ........................... 411
   8.5  Exercises ............................................. 426

Bibliography .................................................. 429

Index ......................................................... 449


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:36 2019. Размер: 8,069 bytes.
Посещение N 1055 c 05.08.2014