McCauley J.L. Stochastic calculus and differential equations for physics and finance (Cambridge; New York, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMcCauley J.L. Stochastic calculus and differential equations for physics and finance. - Cambridge; New York: Cambridge univ. press, 2013. - xi, 206 p.: ill. - Bibliogr.: p.200-203. - Ind.: p.204-206. - Пер. загл.: Стохастическое исчисление и дифференциальные уравнения для физики и финансов. - ISBN 978-0-521-76340-0.
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Abbreviations .................................................. xi
Introduction .................................................... 1
1  Random variables and probability distributions ............... 5
   1.1  Particle descriptions of partial differential 
        equations ............................................... 5
   1.2  Random variables and stochastic processes ............... 7
   1.3  The n-point probability distributions ................... 9
   1.4  Simple averages and scaling ............................ 10
   1.5  Pair correlations and 2-point densities ................ 11
   1.6  Conditional probability densities ...................... 12
   1.7  Statistical ensembles and time series .................. 13
   1.8  When are pair correlations enough to identify a
        stochastic process? .................................... 16
   Exercises ................................................... 17
2  Martingales, Markov, and nonstationarity .................... 18
   2.1  Statistically independent increments ................... 18
   2.2  Stationary increments .................................. 19
   2.3  Martingales ............................................ 20
   2.4  Nonstationary increment processes ...................... 21
   2.5  Markov processes ....................................... 22
   2.6  Drift plus noise ....................................... 22
   2.7  Gaussian processes ..................................... 23
   2.8  Stationary vs. nonstationary processes ................. 24
   Exercises ................................................... 26
3  Stochastic calculus ......................................... 28
   3.1  The Wiener process ..................................... 28
   3.2  Ito's theorem .......................................... 29
   3.3  Ito's lemma ............................................ 30
   3.4  Martingales for greenhorns ............................. 31
   3.5  First-passage times .................................... 33
   Exercises ................................................... 35
4  Ito processes and Fokker-Planck equations ................... 37
   4.1  Stochastic differential equations ...................... 37
   4.2  Ito's lemma ............................................ 39
   4.3  The Fokker-Planck pde .................................. 39
   4.4  The Chapman-Kolmogorov equation ........................ 41
   4.5  Calculating averages ................................... 42
   4.6  Statistical equilibrium ................................ 43
   4.7  An ergodic stationary process .......................... 45
   4.8  Early models in statistical physics and finance ........ 45
   4.9  Nonstationary increments revisited ..................... 48
   Exercises ................................................... 48
5  Selfsimilar Ito processes ................................... 50
   5.1  Selfsimilar stochastic processes ....................... 50
   5.2  Scaling in diffusion ................................... 51
   5.3  Superficially nonlinear diffusion ...................... 53
   5.4  Is there an approach to scaling? ....................... 54
   5.5  Multiaffine scaling .................................... 55
   Exercises ................................................... 56
6  Fractional Brownian motion .................................. 57
   6.1  Introduction ........................................... 57
   6.2  Fractional Brownian motion ............................. 57
   6.3  The distribution of fractional Brownian motion ......... 60
   6.4  Infinite memory processes .............................. 61
   6.5  The minimal description of dynamics .................... 62
   6.6  Pair correlations cannot scale ......................... 63
   6.7  Semimartingales ........................................ 64
   Exercises ................................................... 65
7  Kolmogorov's pdes and Chapman-Kolmogorov .................... 66
   7.1  The meaning of Kolmogorov's first pde .................. 66
   7.2  An example of backward-time diffusion .................. 68
   7.3  Deriving the Chapman-Kolmogorov equation for
        an Ito process ......................................... 68
   Exercise .................................................... 70
8  Non-Markov Ito processes .................................... 71
   8.1  Finite memory Ito processes? ........................... 71
   8.2  A Gaussian Ito process with 1-state memory ............. 72
   8.3  McKean's examples ...................................... 74
   8.4  The Chapman-Kolmogorov equation ........................ 78
   8.5  Interacting system with a phase transition ............. 79
   8.6  The meaning of the Chapman-Kolmogorov equation ......... 81
   Exercise .................................................... 82
9  Black-Scholes, martingales, and Feynman-Kac ................. 83
   9.1  Local approximation to sdes ............................ 83
   9.2  Transition densities via functional integrals .......... 83
   9.3  Black-Scholes-type pdes ................................ 84
   Exercise .................................................... 85
10 Stochastic calculus with martingales ........................ 86
   10.1 Introduction ........................................... 86
   10.2 Integration by parts ................................... 87
   10.3 An exponential martingale .............................. 88
   10.4 Girsanov's theorem ..................................... 89
   10.5 An application of Girsanov's theorem ................... 91
   10.6 Topological inequivalence of martingales with Wiener
        processes .............................................. 93
   10.7 Solving diffusive pdes by running an Ito process ....... 96
   10.8 First-passage times .................................... 97
   10.9 Martingales generally seen ............................ 102
   Exercises .................................................. 105
11 Statistical physics and finance: A brief history of each ... 106
   11.1 Statistical physics ................................... 106
   11.2 Finance theory ........................................ 110
   Exercise ................................................... 115
12 Introduction to new financial economics .................... 117
   12.1 Excess demand dynamics ................................ 117
   12.2 Adam Smith's unreliable hand .......................... 118
   12.3 Efficient markets and martingales ..................... 120
   12.4 Equilibrium markets are inefficient ................... 123
   12.5 Hypothetical FX stability under a gold standard ....... 126
   12.6 Value ................................................. 131
   12.7 Liquidity, reversible trading, and fat tails vs.
        crashes ............................................... 132
   12.8 Spurious stylized facts ............................... 143
   12.9 An sde for increments ................................. 146
   Exercises .................................................. 147
13 Statistical ensembles and time-series analysis ............. 148
   13.1 Detrending economic variables ......................... 148
   13.2 Ensemble averages and time series ..................... 149
   13.3 Time-series analysis .................................. 152
   13.4 Deducing dynamics from time series .................... 162
   13.5 Volatility measures ................................... 167
   Exercises .................................................. 168
14 Econometrics ............................................... 169
   14.1 Introduction .......................................... 169
   14.2 Socially constructed statistical equilibrium .......... 172
   14.3 Rational expectations ................................. 175
   14.4 Monetary policy models ................................ 177
   14.5 The monetarist argument against government 
        intervention .......................................... 179
   14.6 Rational expectations in a real, nonstationary
        market ................................................ 180
   14.7 Volatility, ARCH, and GARCH ........................... 192
   Exercises .................................................. 195
15 Semimartingales ............................................ 196
   15.1 Introduction .......................................... 196
   15.2 Filtrations ........................................... 197
   15.3 Adapted processes ..................................... 197
   15.4 Martingales ........................................... 198
   15.5 Semimartingales ....................................... 198
   Exercise ................................................... 199
   References ................................................. 200

Index ......................................................... 204


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:34 2019. Размер: 12,928 bytes.
Посещение N 1345 c 29.07.2014