Gurlebeck K. Holomorphic functions in the plane and n-dimensional space (Basel; Boston; Berlin, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGürlebeck K. Holomorphic functions in the plane and n-dimensional space / K.Gürlebeck, K.Habetha, W.Sprossig. - Basel; Boston; Berlin: Birkhäuser, 2008. - ix, 394 p.: ill. + CD-ROM. - Incl. bibl. ref. and ind. - ISBN 978-3-7643-8271-1
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface to the German Edition .................................. xi
Preface to the English Edition ................................ xiv

I   Numbers ..................................................... 1

1  Complex numbers .............................................. 2
   1.1  The History of Their Discovery .......................... 2
   1.2  Definition and Properties ............................... 3
   1.3  Representations and geometric aspects .................. 10
   1.4  Exercises .............................................. 13
2  Quaternions ................................................. 15
   2.1  The history of their discovery ......................... 15
   2.2  Definition and properties .............................. 16
   2.3  Mappings and representations ........................... 24
        2.3.1  Basic maps ...................................... 24
        2.3.2  Rotations in fig.33 ................................. 26
        2.3.3  Rotations of fig.34 ................................. 30
        2.3.4  Representations ................................. 31
   2.4  Vectors and geometrical aspects ........................ 33
        2.4.1  Bilinear products ............................... 37
        2.4.2  Multilinear products ............................ 42
   2.5  Applications ........................................... 46
        2.5.1  Visualization of the sphere S3 .................. 46
        2.5.2  Elements of spherical trigonometry .............. 47
   2.6  Exercises .............................................. 49
3  Clifford numbers ............................................ 50
   3.1  History of the discovery ............................... 50
   3.2  Definition and properties .............................. 52
        3.2.1  Definition of the Clifford algebra .............. 52
        3.2.2  Structures and automorphisms .................... 55
        3.2.3  Modulus ......................................... 58
   3.3  Geometrie applications ................................. 61
        3.3.1  Spin groups ..................................... 61
        3.3.2  Construction of rotations of fig.3n ................. 63
        3.3.3  Rotations of fig.3n+1 ............................... 66
   3.4  Representations ........................................ 67
   3.5  Exercises .............................................. 71

II  Functions .................................................. 73

4  Topological aspects ......................................... 74
   4.1  Topology and continuity ................................ 74
   4.2  Series ................................................. 79
   4.3  Riemann spheres ........................................ 83
        4.3.1  Complex case .................................... 83
        4.3.2  Higher dimensions ............................... 87
   4.4  Exercises .............................................. 88
5  Holomorphic functions ....................................... 90
   5.1  Differentiation in fig.2 ................................... 90
   5.2  Differentiation in fig.7 ................................... 95
        5.2.1  Mejlikhzhon's result ............................ 96
        5.2.2  H-holomorphic functions ......................... 97
        5.2.3  Holomorphic functions and differential forms ... 101
   5.3  Differentiation in fig.2ℓ(n) .............................. 104
   5.4  Exercises ............................................. 107
6  Powers and Mцbius transforms ............................... 108
   6.1  Powers ................................................ 108
        6.1.1  Powers in fig.2 .................................... 108
        6.1.2  Powers in higher dimensions .................... 109
   6.2  Mцbius transformations ................................ 114
        6.2.1  Mцbius transformations in fig.2 .................... 114
        6.2.2  Mцbius transformations in higher dimensions .... 118
   6.3  Exercises ............................................. 124

III  Integration and integral theorems ........................ 125

7  Integral theorems and integral formulae .................... 126
   7.1  Cauchy's integral theorem and its inversion ........... 126
   7.2  Formulae of Borel-Pompeiu and Cauchy .................. 129
        7.2.1  Formula of Borel-Pompeiu ....................... 129
        7.2.2  Formula of Cauchy .............................. 131
        7.2.3  Formulae of Plemelj-Sokhotski .................. 133
        7.2.4  History of Cauchy and Borel-Pompeiu formulae ... 138
   7.3  Consequences of Cauchy's integral formula ............. 141
        7.3.1  Higher order derivatives of holomorphic
               functions ...................................... 141
        7.3.2  Mean value property and maximum principle ...... 144
        7.3.3  Liouville's theorem ............................ 146
        7.3.4  Integral formulae of Schwarz and Poisson ....... 147
   7.4  Exercises ............................................. 149
8  Teodorescu transform ....................................... 151
   8.1  Properties of the Teodorescu transform ................ 151
   8.2  Hodge decomposition of the quaternionic Hilbert
        space ................................................. 156
        8.2.1  Hodge decomposition ............................ 156
        8.2.2  Representation theorem ......................... 159
   8.3  Exercises ............................................. 160

IV Series expansions and local behavior ....................... 161

9  Power series ............................................... 162
   9.1  WeierstraЯ' convergence theorems, power series ........ 162
        9.1.1  Convergence theorems according to WeierstraЯ ... 162
        9.1.2  Power series in fig.2 .............................. 164
        9.1.3  Power series in fig.2ℓ(n) .......................... 167
   9.2  Taylor and Laurent series in fig.2 ........................ 169
        9.2.1  Taylor series .................................. 169
        9.2.2  Laurent series ................................. 173
   9.3  Taylor and Laurent series in fig.2ℓ(n) .................... 175
        9.3.1  Taylor series .................................. 175
        9.3.2  Laurent series ................................. 181
   9.4  Exercises ............................................. 184
10 Orthogonal expansions in fig.7 ................................. 186
   10.1 Complete H-holomorphic function systems ............... 186
        10.1.1 Polynomial systems ............................. 188
        10.1.2 Inner and outer spherical functions ............ 191
        10.1.3 Harmonic spherical functions ................... 194
        10.1.4 H-holomorphic spherical functions .............. 196
        10.1.5 Completeness in L2(B3) ∩ ker fig.8 ................. 202
   10.2 Fourier expansion in fig.7 ................................ 203
   10.3 Applications .......................................... 203
        10.3.1 Derivatives of fig.7-holomorphic polynomials ....... 203
        10.3.2 Primitives of fig.7-holomorphic functions .......... 207
        10.3.3 Decomposition theorem and Taylor expansion ..... 213
   10.4 Exercises ............................................. 215
11 Elementary functions ....................................... 218
   11.1 Elementary functions in fig.2 ............................. 218
        11.1.1 Exponential function ........................... 218
        11.1.2 Trigonometric functions ........................ 219
        11.1.3 Hyperbolic functions ........................... 221
        11.1.4 Logarithm ...................................... 223
   11.2 Elementary functions in fig.2ℓ(n) ......................... 225
        11.2.1 Polar decomposition of the Cauchy-Riemann
               operator ....................................... 225
        11.2.2 Elementary radial functions .................... 229
        11.2.3 Fueter-Sce construction of holomorphic
               functions ...................................... 234
        11.2.4 Cauchy-Kovalevsky extension .................... 239
        11.2.5 Separation of variables ........................ 244
   11.3 Exercises ............................................. 249
12 Local structure of holomorphic functions ................... 252
   12.1 Behavior at zeros ..................................... 252
        12.1.1 Zeros in fig.2 ..................................... 252
        12.1.2 Zeros in fig.2ℓ(n) ................................. 255
   12.2 Isolated singularities of holomorphic functions ....... 259
        12.2.1 Isolated singularities in fig.2 .................... 259
        12.2.2 Isolated singularities in fig.2ℓ(n) ................ 265
   12.3 Residue theorem and the argument principle ............ 267
        12.3.1 Residue theorem in fig.2 ........................... 267
        12.3.2 Argument principle in fig.2 ........................ 270
        12.3.3 Residue theorem in fig.2ℓ(n) ....................... 274
        12.3.4 Argument principle in fig.2ℓ(n) .................... 276
   12.4 Calculation of real integrals ......................... 279
   12.5 Exercises ............................................. 285
13 Special functions .......................................... 287
   13.1 Euler's Gamma function ................................ 287
        13.1.1 Definition and functional equation ............. 287
        13.1.2 Stirling's theorem ............................. 291
   13.2 Riemann's Zeta function ............................... 296
        13.2.1 Dirichlet series ............................... 296
        13.2.2 Riemann's Zeta function ........................ 298
   13.3 Automorphic forms and functions ....................... 302
        13.3.1 Automorphic forms and functions in fig.2 ........... 302
        13.3.2 Automorphic functions and forms in fig.2ℓ(n) ....... 307
   13.4 Exercises ............................................. 321

Appendix ...................................................... 323
A.l Differential forms in fig.3n .................................. 324
    A.1.1 Alternating linear mappings ......................... 324
    A.1.2 Differential forms .................................. 329
    A.1.3 Exercises ........................................... 336
A.2 Integration and manifolds ................................. 338
    A.2.1 Integration ......................................... 338
          A.2.1.1  Integration in fig.3n+1 ........................ 338
          A.2.1.2  Transformation of variables ................ 339
          A.2.1.3  Manifolds and integration .................. 341
    A.2.2 Theorems of Stokes, Gauß, and Green ................. 351
          A.2.2.1  Theorem of Stokes .......................... 351
          A.2.2.2  Theorem of Gauß ............................ 352
          A.2.2.3  Theorem of Green ........................... 354
    A.2.3 Exercises ........................................... 355
A.3 Some function spaces ...................................... 357
    A.3.1 Spaces of Hölder continuous functions ............... 357
    A.3.2 Spaces of differentiable functions .................. 358
    A.3.3 Spaces of integrable functions ...................... 359
    A.3.4 Distributions ....................................... 360
    A.3.5 Hardy spaces ........................................ 361
    A.3.6 Sobolev spaces ...................................... 361
A.4 Properties of holomorphic spherical functions ............. 363
    A.4.1 Properties of Legendre polynomials .................. 363
    A.4.2 Norm of holomorphic spherical functions ............. 364
    A.4.3 Scalar products of holomorphic spherical functions .. 368
    A.4.4 Complete orthonormal systems in fig.9+n,H ............... 370
    A.4.5 Derivatives of holomorphic spherical functions ...... 374
    A.4.6 Exercises ........................................... 375

Bibliography .................................................. 377

Index ......................................................... 385


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:24 2019. Размер: 17,361 bytes.
Посещение N 1447 c 27.05.2014