Preface ......................................................... V
List of Contributors .......................................... XXI
1 Bacterial Metabolism in Wastewater Treatment Systems ....... 1
Claudia Gallert and Josef Winter
1.1 Introduction ............................................... 1
1.2 Decomposition of Organic Carbon Compounds in Natural and
Manmade Ecosystems ......................................... 1
1.2.1 Basic Biology, Mass, and Energy Balance of Aerobic
Biopolymer Degradation .............................. 3
1.2.1.1 Mass and Energy Balance for Aerobic
Glucose Respiration and Sewage Sludge
Stabilization .............................. 4
1.2.1.2 Mass and Energy Balance for Anaerobic
Glucose Degradation and Sewage Sludge
Stabilization .............................. 6
1.2.2 General Considerations for the Choice of Aerobic
or Anaerobic Wastewater Treatment Systems ........... 8
1.2.3 Aerobic or Anaerobic Hydrolysis of Biopolymers:
Kinetic Aspects ..................................... 8
1.2.4 Hydrolysis of Cellulose by Aerobic and Anaerobic
Microorganisms: Biological Aspects .................. 9
1.2.5 Biomass Degradation in the Presence of Inorganic
Electron Acceptors and by an Anaerobic Food Chain .. 12
1.2.6 Roles of Molecular Hydrogen and Acetate During
Anaerobic Biopolymer Degradation ................... 14
1.2.7 Anaerobic Conversion of Biopolymers to Methane and
C02 ................................................ 15
1.2.7.1 Anaerobic Degradation of Carbohydrates in
Wastewater ................................ 16
1.2.7.2 Anaerobic Degradation of Protein .......... 18
1.2.7.3 Anaerobic Degradation of Neutral Fats and
Lipids .................................... 20
1.2.8 Competition of Sulfate Reducers with Methanogens
in Methane Reactors ................................ 22
1.2.9 Amount and Composition of Biogas During
Fermentation of Carbohydrates, Proteins, and Fats .. 23
1.3 Nitrogen Removal During Wastewater Treatment .............. 24
1.3.1 Ammonification ..................................... 25
1.3.2 Nitrification of Ammonia ........................... 25
1.3.2.1 Autotrophic Nitrification ................. 25
1.3.2.2 Heterotrophic Nitrification ............... 26
1.3.3 Denitrification: Nitrate Removal from Wastewater ... 27
1.3.4 Combined Nitrification and Denitrification ......... 28
1.3.5 Anaerobic Ammonia Oxidation (Anammox®) ............. 29
1.3.6 New N-removal Processes ............................ 30
1.4 Enhanced Biological Phosphate Removal ..................... 31
1.5 Biological Removal, Biotransformation, and Biosorption of
Metal Ions from Contaminated Wastewater ................... 33
1.5.1 Sulfate Reduction and Metal Ion Precipitation ...... 35
1.6 Aerobic and Anaerobic Degradation of Xenobiotics .......... 36
1.7 Bioaugmentation in Wastewater Treatment Plants for
Degradation of Xenobiotics ................................ 39
References ................................................ 41
2 Industrial Wastewater Sources and Treatment Strategies .... 49
Karl-Heinz Rosenwinkel, Ute Austermann-Haun, and Hartmut
Meyer
2.1 Introduction and Targets .................................. 49
2.2 Wastewater Flow Fractions from Industrial Plants .......... 50
2.2.1 Synopsis ........................................... 50
2.2.2 Rainwater .......................................... 50
2.2.3 Wastewater from Sanitary and Employee Facilities ... 51
2.2.4 Cooling Water ...................................... 51
2.2.5 Wastewater from In-plant Water Preparation ......... 52
2.2.6 Production Wastewater .............................. 52
2.3 Kinds and Impacts of Wastewater Components ................ 52
2.3.1 Temperature ........................................ 52
2.3.2 pH ................................................. 53
2.3.3 Obstructing Components ............................. 53
2.3.4 Total Solids, Suspended Solids, Filterable Solids,
Settleable Solids .................................. 53
2.3.5 Organic Substances ................................. 53
2.3.6 Nutrient Salts (Nitrogen, Phosphorus, Sulfur) ...... 54
2.3.7 Hazardous Substances ............................... 54
2.3.8 Corrosion-inducing Substances ...................... 55
2.3.9 Cleaning Agents, Disinfectants, and Lubricants ..... 55
2.4 General Processes in Industrial Wastewater Treatment
Concepts .................................................. 56
2.4.1 General Information ................................ 56
2.4.2 Production-integrated Environmental Protection ..... 56
2.4.3 Typical Treatment Sequence in a Wastewater
Treatment Plant .................................... 57
2.5 Wastewater Composition and Treatment Strategies in the
Food Processing Industry .................................. 58
2.5.1 General Information ................................ 58
2.5.2 Sugar Factories .................................... 58
2.5.3 Starch Factories ................................... 61
2.5.4 Vegetable Oil and Shortening Production ............ 63
2.5.5 Potato Processing Industry ......................... 65
2.5.6 Slaughterhouses .................................... 67
2.5.7 Dairy Industry ..................................... 69
2.5.8 Fruit Juice and Beverage Industry .................. 70
2.5.9 Breweries .......................................... 72
2.5.10 Distilleries ....................................... 73
References ................................................ 75
3 Activated Sludge Process .................................. 79
Rolf Kayser
3.1 Process description and historical development ............ 79
3.1.1 Single-stage process ............................... 79
3.1.2 Two-stage process .................................. 81
3.1.3 Single sludge carbon, nitrogen, and phosphorous
removal ............................................ 82
3.1.4 Sequencing batch reactor (SBR) process ............. 83
3.1.5 Special developments ............................... 84
3.1.5.1 Pure oxygen-activated sludge process ...... 84
3.1.5.2 Attached growth material in activated
sludge aeration tanks ..................... 84
3.1.5.3 High-rate reactors ........................ 85
3.1.5.4 Membrane separation of mixed liquor ....... 85
3.2 Technological and microbiological aspects ................. 86
3.2.1 Wastewater characteristics ......................... 86
3.2.2 Removal of organic carbon .......................... 87
3.2.3 Nitrification ...................................... 90
3.2.4 Denitrification .................................... 93
3.2.5 Phosphorus Removal ................................. 95
3.2.6 Environmental factors .............................. 96
3.2.6.1 Dissolved oxygen .......................... 96
3.2.6.2 Alkalinity and pH ......................... 96
3.2.6.3 Toxic substances .......................... 97
3.2.7 Properties of mixed liquor ......................... 98
3.3 Plant Configurations ...................................... 99
3.3.1 Typical Tanks for mixing and aeration .............. 99
3.3.2 Carbon removal processes .......................... 101
3.3.3 Nitrogen removal processes ........................ 101
3.3.3.1 Introduction ............................. 101
3.3.3.2 Pre-anoxic zone denitrification .......... 102
3.3.3.3 Step-feed denitrification process ........ 104
3.3.3.4 Simultaneous nitrification and
denitrification .......................... 106
3.3.3.5 Intermittent nitrification-
Denitrification process .................. 108
3.3.3.6 Intermittent nitrification-
denitrification processes with
intermittent wastewater feeding .......... 110
3.3.3.7 Special processes for low COD/TKN ratio .. 111
3.3.3.8 Post-denitrification with external
organic carbon ........................... 112
3.3.4 Interactions between the biological reactors
and the final clarifiers .......................... 113
3.4 Design procedure ......................................... 114
References ............................................... 116
4 Modeling of Aerobic Wastewater Treatment Processes ....... 121
Mogens Henze
4.1 Introduction ............................................. 121
4.2 Purpose of Modeling ...................................... 121
4.3 Elements of Activated Sludge Models ...................... 122
4.3.1 Transport Processes and Treatment Plant Layout .... 122
4.3.1.1 Aeration ................................. 122
4.3.1.2 Components ............................... 123
4.3.1.3 Processes ................................ 123
4.3.1.4 Hydraulic Patterns ....................... 123
4.4 Presentation of Models ................................... 123
4.4.1 Mass Balances ..................................... 124
4.4.2 Rates ............................................. 124
4.4.3 Component Participation ........................... 124
4.5 The Activated Sludge Models Nos. 1, 2 and 3 (ASM1, ASM2,
ASM3) .................................................... 124
4.5.1 Activated Sludge Model No. 1 (ASM1) ............... 125
4.5.2 Activated Sludge Model No. 2 (ASM2) ............... 127
4.5.3 Activated Sludge Model No. 3 (ASM3) ............... 127
4.6 Wastewater Characterization .............................. 128
4.7 Model Calibration ........................................ 130
4.8 Computer Programs ........................................ 131
4.9 Use of Models ............................................ 131
References ............................................... 133
5 High-rate Anaerobic Wastewater Treatment ................. 135
Hans-Joachim Jördening and Klaus Buchholz
5.1 Introduction ............................................. 135
5.2 Basic Principles ......................................... 138
5.2.1 Biofilm Formation ................................. 138
5.2.2 Biofilm Characteristics ........................... 139
5.2.3 Kinetics and Mass Transfer ........................ 139
5.2.3.1 External Mass Transfer ................... 140
5.2.3.2 Internal Mass Transfer ................... 141
5.2.4 Support Characteristics ........................... 142
5.2.4.1 Stationary Fixed-film Reactors ........... 142
5.2.4.2 Fluidized-bed Reactors ................... 143
5.3 Reactor Design Parameters ................................ 145
5.3.1 Scale-up .......................................... 145
5.3.2 Support ........................................... 146
5.3.2.1 Stationary-bed Reactors .................. 147
5.3.2.2 Fluidized-bed Reactors ................... 149
5.3.3 Wastewater ........................................ 150
5.3.3.1 Solids in Stationary Fixed-film Reactors . 151
5.3.3.2 Solids in Fluidized-bed Reactors ......... 151
5.3.4 Reactor Geometry and Technological Aspects ........ 151
5.3.4.1 Fixed-bed Reactors ....................... 151
5.3.4.2 Fluidized-bed Reactors ................... 152
Fluidization of the Support .............. 153
Bed Height and Loss of Support ........... 153
5.4 Reactor Operation ........................................ 154
5.4.1 Start-up Procedure ................................ 154
5.4.2 Operation Results: Stationary Bed ................. 155
5.4.3 Operational Results: Fluidized-bed Reactors ....... 157
5.5 Conclusions .............................................. 157
References ............................................... 159
6 Modeling of Biogas Reactors .............................. 163
Herbert Märkl
6.1 Introduction ............................................. 163
6.1.1 Elements of the Mathematical Model ................ 163
6.1.2 Scale-Up Strategy ................................. 165
6.2 Measuring Techniques ..................................... 167
6.2.1 Online Measurement Using a Mass Spectrometer ...... 167
6.2.2 Online Monitoring of Organic Substances with
High-Pressure Liquid Chromatography (HPLC) ........ 169
6.3 Kinetics ................................................. 170
6.3.1 Acetic Acid, Propionic Acid ....................... 176
6.3.2 Hydrogen Sulfide .................................. 179
6.3.3 Conclusions ....................................... 179
6.4 Hydrodynamic and Liquid Mixing Behavior of the Biogas
Tower Reactor ............................................ 181
6.4.1 Mixing of the Liquid Phase ........................ 182
6.4.1.1 Model A .................................. 185
6.4.1.2 Model В .................................. 186
6.4.2 Distribution of Biomass within the Reactor ........ 188
6.4.2.1 Experiments .............................. 188
6.4.2.2 Mathematical Modeling .................... 190
6.5 Mass Transport from the Liquid Phase to the Gas Phase .... 192
6.5.1 Liquid Phase ...................................... 195
6.5.2 Gas Bubbles ....................................... 195
6.5.3 Head Space ........................................ 195
6.6 Influence of Hydrostatic Pressure on Biogas Production ... 197
6.7 Outlook .................................................. 199
References ............................................... 202
7 Aerobic Degradation of Recalcitrant Organic Compounds
by Microorganisms ........................................ 203
Wolfgang Fritsche and Martin Hofrichter
7.1 Introduction: Characteristics of Aerobic Microorganisms
Capable of Degrading Organic Pollutants .................. 203
7.2 Principles of Bacterial Degradation ...................... 205
7.2.1 Typical Aerobic Degrading Bacteria ................ 205
7.2.2 Growth-associated Degradation of Aliphatics ....... 206
7.2.3 Diversity of Aromatic Compounds: Unity of
Catabolic Processes ............................... 210
7.2.4 Extension of Degradative Capacities ............... 212
7.2.4.1 Cometabolic Degradation of
Organopollutants ......................... 212
7.2.4.2 Overcoming Persistent Pollutants by
Cooperation Between Anaerobic and
Aerobic Bacteria ......................... 214
7.3 Degradative Capacities of Fungi .......................... 216
7.3.1 Metabolism of Organopollutants by Microfungi ...... 216
7.3.1.1 Aliphatic Hydrocarbons ................... 216
7.3.1.2 Aromatic Compounds ....................... 217
7.3.2 Degradative Capabilities of Basidiomycetous Fungi . 220
7.3.2.1 The Ligninolytic Enzyme System ........... 220
7.3.2.2 Degradation of Organopollutants .......... 224
7.4 Conclusions .............................................. 225
References ............................................... 226
8 Principles of Anaerobic Degradation of Organic Compounds . 229
Bernhard Schink
8.1 General Aspects of Anaerobic Degradation Processes ....... 229
8.2 Key Reactions in Anaerobic Degradation of Certain
Organic Compounds ........................................ 231
8.2.1 Degradation of Hydrocarbons ....................... 231
8.2.2 Degradation of Ether Compounds and Nonionic
Surfactants ....................................... 232
8.2.3 Degradation of N-Alkyl Compounds and
Nitrilotriacetate ................................. 234
8.2.4 Degradation of S-Alkyl Compounds .................. 235
8.2.5 Degradation of Ketones ............................ 235
8.2.6 Degradation of Aromatic Compounds ................. 236
8.2.6.1 Benzoate and the Benzoyl-CoA Pathway ..... 237
8.2.6.2 Phenol, Hydroxybenzoates, and Aniline .... 238
8.2.6.3 Cresols .................................. 240
8.2.6.4 Hydroquinone and Catechol ................ 241
8.2.6.5 Resorcinol ............................... 241
8.2.6.6 Trihydroxybenzenes and
Trihydroxybenzoates ...................... 242
8.2.6.7 Hydroxyhydroquinone, a New Important
Intermediate ............................. 244
8.2.6.8 Aromatic Hydrocarbons .................... 245
8.2.7 Degradation of Halogenated Organics ............... 247
8.2.8 Degradation of Sulfonates ......................... 248
8.2.9 Degradation of Nitroorganics ...................... 248
8.3 Concluding Remarks ....................................... 249
References ............................................... 250
9 Soil Remediation and Disposal ............................ 259
Michael Koning, Karsten Hupe, and Rainer Stegmann
9.1 Introduction ............................................. 259
9.2 Thermal Processes ........................................ 260
9.2.1 Thermal Ex Situ Processes ......................... 260
9.2.2 Thermal In Situ Processes ......................... 263
9.2.3 Application of Thermal Processes .................. 263
9.3 Chemical/Physical Processes .............................. 264
9.3.1 Chemical/Physical Ex Situ Processes ............... 264
9.3.2 Chemical/Physical In Situ Processes ............... 266
9.3.3 Application of Chemical/Physical Processes ........ 267
9.4 Biological Processes ..................................... 267
9.4.1 Biological Ex Situ Processes ...................... 268
9.4.2 Biological In Situ Processes ...................... 270
9.4.3 Application of Biological Processes ............... 270
9.5 Disposal ................................................. 271
9.6 Utilization of Decontaminated Soil ....................... 271
9.7 Conclusions .............................................. 272
References ............................................... 272
10 Bioremediation by the Heap Technique ..................... 275
Volker Schulz-Berendt
10.1 Introduction ............................................. 275
10.2 Principles of the Heap Technique ......................... 276
10.3 Different Heap Techniques ................................ 279
10.4 Efficiency and Economy ................................... 282
References ............................................... 284
11 Bioreactors .............................................. 287
Rene H. Kleijntjens and Karel Ch.A.M. Luyhen
11.1 Introduction ........................................ 287
11.1.1 Contaminated Solid Waste Streams (Soils,
Sediments, and Sludges) ........................... 287
11.1.2 Characteristics of Contaminated Solids ............ 288
11.2 Bioreactors .............................................. 289
11.2.1 Reactor Configurations ............................ 289
11.2.2 Diffusion of Contaminants out of Solid Particles .. 291
11.3 Slurry Bioreactors ....................................... 292
11.3.1 Slurry Processing ................................. 292
11.3.2 Batch Operation ................................... 293
11.3.3 Full Scale Batch Processes ........................ 296
11.3.3.1 The DMT-Biodyn Process ................... 296
11.3.3.2 The FORTEC Process ....................... 297
11.3.3.3 The OMH Process .......................... 297
11.3.3.4 The Huber Process ........................ 297
11.3.4 Sequential Batch Operation (Semicontinuous) ....... 297
11.3.5 Continuous Operation .............................. 299
11.4 Solid-State Bioreactors .................................. 303
11.4.1 Process Configuration ............................. 303
11.4.2 Batch Operation: Composting ....................... 303
11.4.3 (Semi)Continuous Operation: The Rotating-drum
Bioreactor ........................................ 304
11.5 Comparison of Bioreactors ................................ 305
11.6 Conclusions and Outlook .................................. 306
11.6.1 Conclusions ....................................... 306
11.6.2 Outlook ........................................... 307
References ............................................... 307
12 ln-situ Remediation ...................................... 311
T. Held and H. Dörr
12.1 Introduction ............................................. 311
12.2 Investigations ........................................... 314
12.3 Remediation Technologies ................................. 316
12.3.1 General Considerations ............................ 316
12.3.2 Treatment of Unsaturated Soil (Bioventing) ........ 317
12.3.3 Treatment of Saturated Soil ....................... 319
12.3.3.1 Hydraulic Circuits ....................... 319
12.3.3.2 Special Groundwater Wells ................ 319
12.3.3.3 Biosparging and Bioslurping .............. 320
12.3.3.4 Passive Technologies ..................... 322
12.3.3.5 Natural Attenuation ...................... 324
12.3.3.6 Evolving Technologies .................... 326
12.4 Monitoring .......................................... 328
12.5 Outlook ............................................. 330
References ............................................... 331
13 Composting of Organic Waste .............................. 333
Frank Schuchardt
13.1 Introduction ............................................. 333
13.2 Waste Materials for Composting ........................... 334
13.3 Fundamentals of Composting Process ....................... 335
13.4 Composting Technologies .................................. 340
13.5 Composting Systems ....................................... 342
13.5.1 Nonreactor Composting ............................. 342
13.5.2 Reactor Composting ................................ 346
13.6 Compost Quality .......................................... 349
References ............................................... 351
14 Anaerobic Fermentation of Wet and Semidry Garbage Waste
Fractions ................................................ 355
Norbert Rilling
14.1 Introduction ............................................. 355
14.2 Basic Aspects of Biological Waste Treatment .............. 355
14.2.1 Biochemical Fundamentals of Anaerobic
Fermentation ...................................... 356
14.2.1.1 Hydrolytic and Acid-forming
(Fermentative) Bacteria .................. 357
14.2.1.2 Acetic Acid- and Hydrogen-forming
(Acetogenic) Bacteria ................... 357
14.2.1.3 Methane-forming (Methanogenic) Bacteria .. 357
14.2.2 Influence of Processing Conditions on
Fermentation ...................................... 358
14.2.2.1 Water Content ............................ 358
14.2.2.2 Temperature .............................. 358
14.2.2.3 pH Level ................................. 358
14.2.2.4 Redox Potential and Oxygen ............... 358
14.2.2.5 Inhibitory Factors ....................... 359
14.2.3 Gas Quantity and Composition ...................... 359
14.2.4 Comparison of Aerobic and Anaerobic Waste
Treatment ......................................... 360
14.3 Processes of Anaerobic Waste Treatment ................... 361
14.3.1 Procedures of Anaerobic Waste Fermentation ........ 362
14.3.1.1 Delivery and Storage ..................... 363
14.3.1.2 Preprocessing ............................ 364
14.3.1.3 Anaerobic Fermentation ................... 364
14.3.1.4 Post-processing .......................... 365
14.3.2 Process Engineering of Anaerobic Fermentation of
Biowastes ......................................... 365
14.3.2.1 Dry and Wet Fermentation ................. 366
14.3.2.2 Continuous and Discontinuous Operation ... 367
14.3.2.3 Thermophilic and Mesophilic Operation .... 368
14.3.2.4 Agitation ................................ 368
14.3.3 Survey of Anaerobic Fermentation Processes ........ 369
14.3.4 Feedstock for Anaerobic Digestion ................. 369
14.4 Conclusions .............................................. 372
References ............................................... 373
15 Landfill Systems, Sanitary Landfilling of Solid Wastes,
and Long-term Problems with Leachate ..................... 375
Kai-Uwe Heyer and Rainer Stegmann
15.1 Introduction ............................................. 375
15.2 Biochemical Processes in Sanitary Landfills .............. 375
15.2.1 Aerobic Degradation Phases ........................ 376
15.2.2 Anaerobic Degradation Phases ...................... 376
15.2.3 Factors Affecting Leachate Composition ............ 378
15.2.3.1 Waste Composition ........................ 380
15.2.3.2 Water Balance 380
15.2.3.3 Landfill Age ............................. 381
15.3 Sanitary Landfilling and Leachate Control Strategies ..... 381
15.3.1 Leachate Problems in Landfills .................... 381
15.3.2 Sanitary Landfilling and Legal Requirements ....... 381
15.3.3 Control of Waste Input and Pretreatment before
Deposition ........................................ 382
15.3.4 Control of Water Input and Surface Sealing
Systems ........................................... 382
15.3.5 Control of Leachate Discharge into the
Environment and Base Sealing Systems .............. 384
15.3.6 Leachate Treatment ................................ 386
15.3.7 Environmental Monitoring .......................... 387
15.4 Long-term Problems with Leachate ......................... 388
15.4.1 Lysimeter Tests in Landfill Simulation Reactors
(LSR) ............................................. 388
15.4.2 Prognosis of Periods of the Long-Term Time Course
of Emissions ...................................... 390
15.5 Controlled Reduction of Leachate Emissions ............... 391
15.5.1 In Situ Stabilization for the Closing and
Aftercare of Landfills ............................ 391
15.5.2 Technical Methods for Water Infiltration and
Effects on Leachate ............................... 392
15.5.3 Aerobic In Situ Stabilization and Effects on
Leachate Contamination ............................ 392
References ........................................ 394
16 Sanitary Landfills: Long-term Stability and Environmental
Implications ............................................. 395
Michael S. Switzenbaum
16.1 Introduction ............................................. 395
16.2 Integrated Waste Management .............................. 397
16.3 Land Disposal ............................................ 398
16.4 Leachate and Gas Management .............................. 403
16.5 Summary and Conclusions .................................. 406
References ............................................... 407
17 Process Engineering of Biological Waste Gas Purification . 409
Muthumbi Waweru, Veerle Herrygers, Herman Van
Langenhove, and Willy Verstraete
17.1 Introduction ............................................. 409
17.2 Biological Waste Gas Purification Technology ............. 409
17.2.1 General Characteristics ........................... 409
17.2.2 Technology Types .................................. 410
17.2.2.1 Biofflter ................................ 410
Mill Biotrickling Filter ................. 410
17.2.2.3 Bioscrabber .............................. 411
17.2.2.4 Membrane Bioreactor ...................... 411
17.3 Performance Parameters ................................... 411
17.3.1 Empty Bed Contact Time or True Contact Time ....... 413
17.3.2 Surface Loading Rate (BA) ......................... 413
17.3.3 Mass Loading Rate (Bv) ............................ 414
17.3.4 Volumetric Loading Rate (vs) ...................... 414
17.3.5 Elimination Capacity (Ec) ......................... 414
17.3.6 Removal Efficiency (RE) ........................... 414
17.4 Characteristics of the Waste Gas Stream .................. 415
17.5 Process Principles ....................................... 417
17.5.1 Equilibrium Partitioning of the Pollutant ......... 417
17.5.2 Diffusion ......................................... 419
17.5.3 Microbial Degradation of the Pollutant ............ 420
17.6 Reactor Performance ...................................... 421
17.7 Reactor Control .......................................... 424
17.8 Perspectives ............................................. 424
Acknowledgments .......................................... 425
References ............................................... 425
18 Commercial Applications of Biological Waste Gas
Purification ............................................. 427
Derek E. Chitwood and Joseph S. Devinny
18.1 Background ............................................... 427
18.1.1 Needs ............................................. 427
18.1.2 Biological Treatment .............................. 428
18.1.3 Biofilters ........................................ 429
18.1.4 Biotrickling Filters .............................. 432
18.1.5 Applications for Biological Systems ............... 432
18.2 Applications ............................................. 433
18.2.1 Soil Bed Biofflters (Bohn and Bohn, 1998) ......... 433
18.2.2 Open Compost Biofflter for Treating Odors from
a Livestock Facility (Nicolai and Janni, 1998) .... 433
18.2.3 Open Bed Compost Biofilter for Wastewater Plant
Odor Control (Chitwood, 1999) ..................... 434
18.2.4 Inorganic Biofilter for Odor Control at
a Wastewater Treatment Facility (Dechant et al.,
1999) ............................................. 435
18.2.5 Biofilter Treating Gasoline Vapor at a Soil Vapor
Extraction Site (Wright et al, 1997) .............. 435
18.2.6 Biofilter Treating VOC Emissions from an Optical
Lens Manufacturer (Standefer et al., 1999) ........ 436
18.2.7 Advanced Biofilter for Controlling Styrene
Emissions (Punti, personal communication;
Thissen, 1997) .................................... 437
References ........................................ 438
19 Perspectives of Wastewater, Waste, Off-gas and Soil
Treatment ................................................ 439
Claudia Gallert and Josef Winter
19.1 Introduction ............................................. 439
19.2 Wastewater Handling ...................................... 439
19.2.1 Domestic Wastewater ............................... 440
19.2.2 Industrial Wastewater ............................. 442
19.2.3 Effluent Quality and Future Improvements .......... 443
19.3 Solid Waste Handling ..................................... 444
19.4 Off-gas Purification ..................................... 446
19.5 Soil Remediation ......................................... 446
19.6 Drinking Water Preparation ............................... 448
19.7 Future Strategies to Reduce Pollution and Conserve
a Natural, Healthy Environment ........................... 448
Subject Index ................................................. 453
|