Moore C. The nature of computation (Oxford; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMoore C. The nature of computation / C.Moore, S.Mertens. - Oxford; New York: Oxford University Press, 2011. - xvii, 985 p.: ill. - Ref.: p.945-973. - Ind.: p.974-985. - ISBN 978-0-19-923321-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Figure Credits ............................................... xiii
Preface ........................................................ xv
1  Prologue ..................................................... 1
   1.1  Crossing Bridges ........................................ 1
   1.2  Intractable Itineraries ................................. 5
   1.3  Playing Chess With God .................................. 8
   1.4  What Lies Ahead ........................................ 10
   Problems .................................................... 11
   Notes ....................................................... 13
2  The Basics .................................................. 15
   2.1  Problems and Solutions ................................. 15
   2.2  Time, Space, and Scaling ............................... 18
   2.3  Intrinsic Complexity ................................... 23
   2.4  The Importance of Being Polynomial ..................... 25
   2.5  Tractability and Mathematical Insight .................. 29
   Problems .................................................... 30
   Notes ....................................................... 35
3  Insights and Algorithms ..................................... 41
   3.1  Recursion .............................................. 42
   3.2  Divide and Conquer ..................................... 43
   3.3  Dynamic Programming .................................... 53
   3.4  Getting There From Here ................................ 59
   3.5  When Greed is Good ..................................... 64
   3.6  Finding a Better Flow .................................. 68
   3.7  Flows, Cuts, and Duality ............................... 71
   3.8  Transformations and Reductions ......................... 74
   Problems .................................................... 76
   Notes ....................................................... 89
4  Needles in a Haystack: the Class NP ......................... 95
   4.1  Needles and Haystacks .................................. 96
   4.2  A Tour of NP ........................................... 97
   4.3  Search, Existence, and Nondeterminism ................. 109
   4.4  Knots and Primes ...................................... 115
   Problems ................................................... 121
   Notes ...................................................... 125
5  Who is the Hardest One of All? NP-Completeness ............. 127
   5.1  When One Problem Captures Them All .................... 128
   5.2  Circuits and Formulas ................................. 129
   5.3  Designing Reductions .................................. 133
   5.4  Completeness as a Surprise ............................ 145
   5.5  The Boundary Between Easy and Hard .................... 153
   5.6  Finally, Hamiltonian Path ............................. 160
   Problems ................................................... 163
   Notes ...................................................... 168
6  The Deep Question: P vs. NP ................................ 173
   6.1  What if P=NP? ......................................... 174
   6.2  Upper Bounds are Easy, Lower Bounds Are Hard .......... 181
   6.3  Diagonalization and the Time Hierarchy ................ 184
   6.4  Possible Worlds ....................................... 187
   6.5  Natural Proofs ........................................ 191
   6.6  Problems in the Gap ................................... 196
   6.7  Nonconstructive Proofs ................................ 199
   6.8  The Road Ahead ........................................ 210
   Problems ................................................... 211
   Notes ...................................................... 218
7  The Grand Unified Theory of Computation .................... 223
   7.1  Babbage's Vision and Hilbert's Dream .................. 224
   7.2  Universality and Undecidability ....................... 230
   7.3  Building Blocks: Recursive Functions .................. 240
   7.4  Form is Function: the λ-Calculus ...................... 249
   7.5  Turing's Applied Philosophy ........................... 258
   7.6  Computation Everywhere ................................ 264
   Problems ................................................... 284
   Notes ...................................................... 290
8  Memory, Paths, and Games ................................... 301
   8.1  Welcome to the State Space ............................ 302
   8.2  Show Me The Way ....................................... 306
   8.3  L and NL-Completeness ................................. 310
   8.4  Middle-First Search and Nondeterministic Space ........ 314
   8.5  You Can't Get There From Here ......................... 317
   8.6  PSPACE, Games, and Quantified SAT ..................... 319
   8.7  Games People Play ..................................... 328
   8.8  Symmetric Space ....................................... 339
   Problems ................................................... 341
   Notes ...................................................... 347
9  Optimization and Approximation ............................. 351
   9.1  Three Flavors of Optimization ......................... 352
   9.2  Approximations ........................................ 355
   9.3  Inapproximability ..................................... 364
   9.4  Jewels and Facets: Linear Programming ................. 370
   9.5  Through the Looking-Glass: Duality .................... 382
   9.6  Solving by Balloon: Interior Point Methods ............ 387
   9.7  Hunting with Eggshells ................................ 392
   9.8  Algorithmic Cubism .................................... 402
   9.9  Trees, Tours, and Polytopes ........................... 409
   9.10 Solving Hard Problems in Practice ..................... 414
   Problems ................................................... 427
   Notes ...................................................... 442
10 Randomized Algorithms ...................................... 451
   10.1 Foiling the Adversary ................................. 452
   10.2 The Smallest Cut ...................................... 454
   10.3 The Satisfied Drunkard: WalkSAT ....................... 457
   10.4 Solving in Heaven, Projecting to Earth ................ 460
   10.5 Games Against the Adversary ........................... 465
   10.6 Fingerprints, Hash Functions, and Uniqueness .......... 472
   10.7 The Roots of Identity ................................. 479
   10.8 Primality ............................................. 482
   10.9 Randomized Complexity Classes ......................... 488
   Problems ................................................... 491
   Notes ...................................................... 502
11 Interaction and Pseudorandomness ........................... 507
   11.1 The Tale of Arthur and Merlin ......................... 508
   11.2 The Fable of the Chess Master ......................... 521
   11.3 Probabilistically Checkable Proofs .................... 526
   11.4 Pseudorandom Generators and Derandomization ........... 540
   Problems ................................................... 553
12 Random Walks and Rapid Mixing .............................. 563
   12.1 A Random Walk in Physics .............................. 564
   12.2 The Approach to Equilibrium ........................... 568
   12.3 Equilibrium Indicators ................................ 573
   12.4 Coupling .............................................. 576
   12.5 Coloring a Graph, Randomly ............................ 579
   12.6 Burying Ancient History: Coupling from the Past ....... 586
   12.7 The Spectral Gap ...................................... 602
   12.8 Flows of Probability: Conductance ..................... 606
   12.9 Expanders ............................................. 612
   12.10 Mixing in Time and Space ............................. 623
   Problems ................................................... 626
   Notes ...................................................... 643
13 Counting, Sampling, and Statistical Physics ................ 651
   13.1 Spanning Trees and the Determinant .................... 653
   13.2 Perfect Matchings and the Permanent ................... 658
   13.3 The Complexity of Counting ............................ 662
   13.4 From Counting to Sampling, and Back ................... 668
   13.5 Random Matchings and Approximating the Permanent ...... 674
   13.6 Planar Graphs and Asymptotics on Lattices ............. 683
   13.7 Solving the Ising Model ............................... 693
   Problems ................................................... 703
   Notes ...................................................... 718
14 When Formulas Freeze: Phase Transitions in Computation ..... 723
   14.1 Experiments and Conjectures ........................... 724
   14.2 Random Graphs, Giant Components, and Cores ............ 730
   14.3 Equations of Motion: Algorithmic Lower Bounds ......... 742
   14.4 Magic Moments ......................................... 748
   14.5 The Easiest Hard Problem .............................. 759
   14.6 Message Passing ....................................... 768
   14.7 Survey Propagation and the Geometry of Solutions ...... 783
   14.8 Frozen Variables and Hardness ......................... 793
   Problems ................................................... 796
   Notes ...................................................... 810
15 Quantum Computation ........................................ 819
   15.1 Particles, Waves, and Amplitudes ...................... 820
   15.2 States and Operators .................................. 823
   15.3 Spooky Action at a Distance ........................... 833
   15.4 Algorithmic Interference .............................. 841
   15.5 Cryptography and Shor's Algorithm ..................... 848
   15.6 Graph Isomorphism and the Hidden Subgroup Problem ..... 862
   15.7 Quantum Haystacks: Grover's Algorithm ................. 869
   15.8 Quantum Walks and Scattering .......................... 876
   Problems ................................................... 888
   Notes ...................................................... 902
A  Mathematical Tools ......................................... 911
   A.1  The Story of О ........................................ 911
   A.2  Approximations and Inequalities ....................... 914
   A.3  Chance and Necessity .................................. 917
   A.4  Dice and Drunkards .................................... 923
   A.5  Concentration Inequalities ............................ 927
   A.6  Asymptotic Integrals .................................. 931
   A.7  Groups, Rings, and Fields ............................. 933

Problems ...................................................... 939
References .................................................... 945
Index ......................................................... 974


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:08 2019. Размер: 14,839 bytes.
Посещение N 1531 c 17.12.2013