Kjaerulff U.B. Bayesian networks and influence diagrams: a guide to construction and analysis (New York, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKjærulff U.B. Bayesian networks and influence diagrams: a guide to construction and analysis / U.B.Kjærulff, A.L.Madsen. - 2nd ed. - New York: Springer, 2013. - xvii, 382 p.: ill. - (Information Science and Statistics). - Ref.: p.371-375. - Ind.: p.377-382. - ISBN 978-1-4614-5103-7; ISSN 1613-9011
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Part I  Fundamentals

1  Introduction ................................................. 3
   1.1  Expert Systems .......................................... 3
        1.1.1  Representation of Uncertainty .................... 4
        1.1.2  Normative Expert Systems ......................... 5
   1.2  Rule-Based Systems ...................................... 5
        1.2.1  Causality ........................................ 6
        1.2.2  Uncertainty in Rule-Based Systems ................ 7
        1.2.3  Explaining Away .................................. 8
   1.3  Bayesian Networks ....................................... 8
        1.3.1  Inference in Bayesian Networks ................... 9
        1.3.2  Construction of Bayesian Networks ............... 10
        1.3.3  An Example ...................................... 11
   1.4  Bayesian Decision Problems ............................. 13
   1.5  When to Use Probabilistic Nets ......................... 14
   1.6  Concluding Remarks ..................................... 15
2  Networks .................................................... 17
   2.1  Graphs ................................................. 18
   2.2  Graphical Models ....................................... 20
        2.2.1  Variables ....................................... 20
        2.2.2  Vertices Vs. Variables .......................... 21
        2.2.3  Taxonomy of Vertices/Variables .................. 22
        2.2.4  Vertex Symbols .................................. 23
        2.2.5  Summary of Notation ............................. 23
   2.3  Evidence ............................................... 24
   2.4  Causality .............................................. 24
   2.5  Flow of Information in Causal Networks ................. 25
        2.5.1  Serial Connections .............................. 26
        2.5.2  Diverging Connections ........................... 28
        2.5.3  Converging Connections .......................... 29
        2.5.4  Intercausal Inference (Explaining Away) ......... 30
        2.5.5  The Importance of Correct Modeling of
               Causality ....................................... 31
   2.6  Two Equivalent Irrelevance Criteria .................... 32
        2.6.1  d-Separation Criterion .......................... 33
        2.6.2  Directed Global Markov Criterion ................ 35
   2.7  Summary ................................................ 36
3  Probabilities ............................................... 39
   3.1  Basics ................................................. 40
        3.1.1  Events .......................................... 40
        3.1.2  Axioms .......................................... 40
        3.1.3  Conditional Probability ......................... 41
   3.2  Probability Distributions for Variables ................ 43
        3.2.1  Rule of Total Probability ....................... 44
        3.2.2  Graphical Representation ........................ 46
   3.3  Probability Potentials ................................. 46
        3.3.1  Normalization ................................... 47
        3.3.2  Evidence Potentials ............................. 49
        3.3.3  Potential Calculus .............................. 50
        3.3.4  Barren Variables ................................ 53
   3.4  Fundamental Rule and Bayes' Rule ....................... 54
        3.4.1  Interpretation of Bayes' Rule ................... 55
   3.5  Bayes' Factor .......................................... 58
   3.6  Independence ........................................... 59
        3.6.1  Independence and DAGs ........................... 60
   3.7  Chain Rule ............................................. 62
   3.8  Summary ................................................ 64
4  Probabilistic Networks ...................................... 69
   4.1  Belief Update .......................................... 70
        4.1.1  Discrete Bayesian Networks ...................... 71
        4.1.2  Conditional Linear Gaussian Bayesian Networks ... 75
   4.2  Decision Making Under Uncertainty ...................... 79
        4.2.1  Discrete Influence Diagrams ..................... 80
        4.2.2  Conditional LQG Influence Diagrams .............. 89
        4.2.3  Limited Memory Influence Diagrams ............... 93
   4.3  Object-Oriented Probabilistic Networks ................. 95
        4.3.1  Chain Rule ..................................... 100
        4.3.2  Unfolded OOPNs ................................. 100
        4.3.3  Instance Trees ................................. 100
        4.3.4  Inheritance .................................... 101
   4.4  Dynamic Models ........................................ 102
        4.4.1  Time-Sliced Networks Represented as OOPNs ...... 104
   4.5  Summary ............................................... 105
5  Solving Probabilistic Networks ............................. 111
   5.1  Probabilistic Inference ............................... 112
        5.1.1  Inference in Discrete Bayesian Networks ........ 112
        5.1.2  Inference in CLG Bayesian Networks ............. 125
   5.2  Solving Decision Models ............................... 128
        5.2.1  Solving Discrete Influence Diagrams ............ 128
        5.2.2  Solving CLQG Influence Diagrams ................ 132
        5.2.3  Relevance Reasoning ............................ 134
        5.2.4  Solving LIMIDs ................................. 136
   5.3  Solving OOPNs ......................................... 140
   5.4  Summary ............................................... 140

Part II  Model Construction
6  Eliciting the Model ........................................ 145
   6.1  When to Use Probabilistic Networks .................... 146
        6.1.1  Characteristics of Probabilistic Networks ...... 147
        6.1.2  Some Criteria for Using Probabilistic
               Networks ....................................... 148
   6.2  Identifying the Variables of a Model .................. 149
        6.2.1  Weil-Defined Variables ......................... 149
        6.2.2  Types of Variables ............................. 152
   6.3  Eliciting the Structure ............................... 154
        6.3.1  A Basic Approach ............................... 154
        6.3.2  Idioms ......................................... 156
        6.3.3  An Example: Extended Chest Clinic Model ........ 163
        6.3.4  The Generic Structure of Probabilistic
               Networks ....................................... 173
   6.4  Model Verification .................................... 174
   6.5  Eliciting the Numbers ................................. 176
        6.5.1  Eliciting Subjective Conditional
               Probabilities .................................. 177
        6.5.2  Eliciting Subjective Utilities ................. 179
        6.5.3  Specifying CPTs and UTs Through Expressions .... 180
   6.6  Concluding Remarks .................................... 183
   6.7  Summary ............................................... 185
7  Modeling Techniques ........................................ 191
   7.1  Structure-Related Techniques .......................... 191
        7.1.1  Parent Divorcing ............................... 192
        7.1.2  Temporal Transformation ........................ 196
        7.1.3  Structural and Functional Uncertainty .......... 197
        7.1.4  Undirected Dependence Relations ................ 201
        7.1.5  Bidirectional Relations ........................ 204
        7.1.6  Naive Bayes Model .............................. 206
   7.2  Probability Distribution-Related Techniques ........... 208
        7.2.1  Measurement Uncertainty ........................ 209
        7.2.2  Expert Opinions ................................ 211
        7.2.3  Node Absorption ................................ 213
        7.2.4  Set Value by Intervention ...................... 214
        7.2.5  Independence of Causal Influence ............... 216
        7.2.6  Mixture of Gaussian Distributions .............. 221
   7.3  Decision-Related Techniques ........................... 224
        7.3.1  Test Decisions ................................. 224
        7.3.2  Missing Informational Links .................... 227
        7.3.3  Missing Observations ........................... 229
        7.3.4  Hypothesis of Highest Probability .............. 231
        7.3.5  Constraints on Decisions ....................... 233
   7.4  Summary ............................................... 235
8  Data-Driven Modeling ....................................... 237
   8.1  The Task and Basic Assumptions ........................ 238
        8.1.1  Basic Assumptions .............................. 240
        8.1.2  Equivalent Models .............................. 240
   8.2  Constraint-Based Structure Learning ................... 242
        8.2.1  Statistical Hypothesis Tests ................... 242
        8.2.2  Structure Constraints .......................... 245
        8.2.3  PC Algorithm ................................... 246
        8.2.4  PC* Algorithm .................................. 251
        8.2.5  NPC Algorithm .................................. 251
   8.3  Search and Score-Based Structure Learning ............. 256
        8.3.1  Space of Structures ............................ 256
        8.3.2  Search Procedures .............................. 257
        8.3.3  Score Functions ................................ 258
        8.3.4  Learning Structure Restricted Models ........... 265
   8.4  Worked Example on Structure Learning .................. 271
        8.4.1  PC Algorithm ................................... 272
        8.4.2  NPC Algorithm .................................. 273
        8.4.3  Search and Score-Based Algorithm ............... 275
        8.4.4  Chow-Liu Tree .................................. 276
        8.4.5  Comparison ..................................... 277
   8.5  Batch Parameter Learning .............................. 278
        8.5.1  Expectation-Maximization Algorithm ............. 279
        8.5.2  Penalized EM Algorithm ......................... 281
   8.6  Sequential Parameter Learning ......................... 283
   8.7  Summary ............................................... 285

Part III  Model Analysis

9  Conflict Analysis .......................................... 291
   9.1  Evidence-Driven Conflict Analysis ..................... 292
        9.1.1  Conflict Measure ............................... 292
        9.1.2  Tracing Conflicts .............................. 294
        9.1.3  Conflict Resolution ............................ 295
   9.2  Hypothesis-Driven Conflict Analysis ................... 297
        9.2.1  Cost-of-Omission Measure ....................... 297
        9.2.2  Evidence with Conflict Impact .................. 297
   9.3  Summary ............................................... 299
10 Sensitivity Analysis ....................................... 303
   10.1 Evidence Sensitivity Analysis ......................... 304
        10.1.1 Distance and Cost-of-Omission Measures ......... 305
        10.1.2 Identify Minimum and Maximum Beliefs ........... 306
        10.1.3 Impact of Evidence Subsets ..................... 307
        10.1.4 Discrimination of Competing Hypotheses ......... 308
        10.1.5 What-If Analysis ............................... 309
        10.1.6 Impact of Findings ............................. 309
   10.2 Parameter Sensitivity Analysis ........................ 311
        10.2.1 Sensitivity Function ........................... 312
        10.2.2 Sensitivity Value .............................. 314
        10.2.3 Admissible Deviation ........................... 316
   10.3 Two-Way Parameter Sensitivity Analysis ................ 317
        10.3.1 Sensitivity Function ........................... 317
   10.4 Parameter Tuning ...................................... 320
   10.5 Summary ............................................... 323
11 Value of Information Analysis .............................. 327
   11.1 VOI Analysis in Bayesian Networks ..................... 328
        11.1.1 Entropy and Mutual Information ................. 328
        11.1.2 Hypothesis-Driven Value of Information
               Analysis ....................................... 329
   11.2 VOI Analysis in Influence Diagrams .................... 333
   11.3 Summary ............................................... 336

Quick Reference to Model Construction ......................... 341
List of Examples .............................................. 351
List of Figures ............................................... 355
List of Tables ................................................ 365
List of Symbols ............................................... 369
Reference ..................................................... 371
Index ......................................................... 377


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:08 2019. Размер: 17,057 bytes.
Посещение N 1400 c 17.12.2013