1 Why Deep Carbon?
Robert M. Hazen, Craig M. Schiffries
FRONTIERS OF DEEP CARBON RESEARCH ............................... 4
ACKNOWLEDGMENTS ................................................. 5
REFERENCES ...................................................... 5
2 Carbon Mineralogy and Crystal Chemistry
Robert M. Hazen, Robert T. Downs, Adrian P. Jones, Linda
Kah
INTRODUCTION .................................................... 7
SYSTEMATIC CARBON MINERALOGY .................................... 8
Carbon allotropes ............................................ 8
Carbides .................................................... 13
Rhombohedral carbonates ..................................... 19
The aragonite group ......................................... 27
Other anhydrous carbonates .................................. 28
Hydrous carbonates .......................................... 31
Minerals incorporating organic molecules .................... 32
Mineral-molecule interactions ............................... 34
CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY ......... 35
ACKNOWLEDGMENTS ................................................ 35
REFERENCES ..................................................... 36
3 Structure, Bonding, and Mineralogy of Carbon at Extreme
Conditions
Artem R. Oganov, Russell J. Hemley, Robert M. Hazen, Adrian
P. Jones
INTRODUCTION ................................................... 47
THEORETICAL CONSIDERATIONS ..................................... 48
ELEMENTAL CARBON ............................................... 49
Stable phases ............................................... 49
Metastable phases ........................................... 52
Fullerenes at pressure ...................................... 54
Ultrahigh-pressure phases ................................... 55
CARBIDES ....................................................... 55
MOLECULAR FRAMEWORK STRUCTURES ................................. 57
Carbon dioxide .............................................. 57
Other compounds ............................................. gj
CARBONATES ..................................................... 63
Behavior of sp2 carbonates .................................. 63
High-pressure sp3 carbonates ................................ 64
Silicate carbonates ......................................... 66
CONCLUSIONS .................................................... 68
ACKNOWLEDGMENTS ................................................ 70
REFERENCES ..................................................... 70
4 Carbon Mineral Evolution
Robert M. Hazen, Robert T. Downs, Linda Kah, Dimitri
Sverjensky
INTRODUCTION ................................................... 79
STAGES OF CARBON MINERAL EVOLUTION ............................. 80
The era of Earth's accretion ................................ 81
The era of crust and mantle processing ...................... 83
The era of the evolving biosphere ........................... 86
CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERAL
EVOLUTION ................................................... 96
ACKNOWLEDGMENTS ................................................ 97
REFERENCES ..................................................... 97
CONCLUDING REMARKS ............................................ 138
ACKNOWLEDGMENTS ............................................... 138
REFERENCES .................................................... 138
5 The Chemistry of Carbon in Aqueous Fluids at
Crustal and Upper-Mantle Conditions: Experimental and
Theoretical Constraints
Craig E. Manning, Everett L. Shock, Dimitri A. Sverjensky
INTRODUCTION .................................................. 109
Carbon in aqueous fluids of crust and mantle 1 до
Sources of carbon in aqueous fluids of the crust and
mantle ..................................................... 110
OXIDIZED CARBON IN AQUEOUS FLUIDS AT HIGH P AND T ............. 112
Aqueous fluids at high P and T ............................. 113
COrH20 mixing and miscibility .............................. 123
REDUCED CARBON IN AQUEOUS FLUIDS AT HIGH P AND T .............. 128
CH4 and CO solubility in H2O ............................... 128
Kinetic inhibition of CH4 formation ........................ 129
Reduced carbon and aqueous fluids at high P and T .......... 131
6 Primordial Origins of Earth's Carbon
Bernard Marty, Conel M.O'D. Alexander, Sean N. Raymond
INTRODUCTION .................................................. 149
CARBON IN THE UNIVERSE ........................................ 150
Nucleosynthesis of carbon and stellar evolution ............ 150
Galactic chemical evolution ................................ 152
Carbon in the interstellar medium and the presolar
molecular cloud ............................................ 152
Carbon content and isotopic composition of the solar
nebula ..................................................... 152
Volatile abundances and isotope compositions in comets
with special reference to carbon ........................... 154
Interplanetary dust particles .............................. 155
Meteorites ................................................. 150
The organic matter in chondrites—relationship to IDPs,
comets, and ISM ............................................ 158
THE SOLAR SYSTEM: DYNAMICS .................................... 159
CLUES TO THE ORIGIN OF CARBON ON EARTH ........................ 165
Terrestrial carbon inventory ............................... 165
Volatile (C-H-N-noble gas) elemental and isotopic
constraints ................................................ 168
Inferences on the nature of Earth's building blocks ........ 169
Is cosmic dust a major source of terrestrial volatiles? .... 170
CARBON TRAPPING IN EARTH ...................................... 172
ACKNOWLEDGEMENTS .............................................. 173
REFERENCES .................................................... 173
7 Ingassing, Storage, and Outgassing of Terrestrial Carbon
through Geologic Time
Rajdeep Dasgupta
INTRODUCTION .................................................. 183
CARBON INHERITANCE — MAGMA OCEAN CARBON CYCLE ................. 184
Magma ocean carbon cycle during core formation ............. 184
Magma ocean carbon cycle after core formation .............. 191
CARBON RETENTION: MODULATING MANTLE CARBON BUDGET THROUGH
THE WILSON CYCLE .............................................. 200
Carbon cycle in an ancient Earth with greater thermal
vigor: an era of more efficient outgassing? ................ 201
Inefficient subduction of carbon in the Archean and
Proterozoic? ............................................... 203
Carbon ingassing in modern Earth ........................... 209
Stable forms of carbon in the modern mantle and carbon
outgassing ................................................. 214
CONCLUDING REMARKS ............................................ 219
ACKNOWLEDGMENTS ............................................... 220
REFERENCES .................................................... 220
8 Carbon in the Core: Its Influence on the Properties of
Core and Mantle
Bernard J. Wood, Jie Li, Anat Shahar
INTRODUCTION .................................................. 231
CARBON ISOTOPES AND CARBON CONTENT OF THE CORE ................ 233
DENSITY AND PHASE DIAGRAM CONSTRAINTS ON THE CARBON
CONTENT OF THE CORE ........................................ 238
The Fe-C phase diagram ..................................... 238
Densities of iron carbides ................................. 239
Sound velocities of Fe, Fe3C and those of the inner core ... 241
CARBON IN THE CORE AND SIDEROPHILE ELEMENTS IN THE MANTLE ..... 243
CONCLUSIONS ................................................... 245
ACKNOWLEDGMENTS ............................................... 247
REFERENCES .................................................... 247
9 Carbon in Silicate Melts
Huaiwei Ni, Hans Keppler
INTRODUCTION .................................................. 251
CARBON SOLUBILITY IN SILICATE MELTS ........................... 251
CO: solubility in nominally anhydrous melts ................ 252
CO2 solubility in hydrous melts ............................ 259
Solubility of C-O-H fluids under reduced conditions ........ 263
CARBON SPECIATION IN SILICATE MELTS ........................... 266
Spectroscopic information on speciation .................... 266
Carbon speciation in silicate glasses ...................... 270
Equilibrium carbon speciation in silicate melts ............ 274
PHYSICAL PROPERTIES OF CARBON-BEARING SILICATE MELTS ....... 277
Viscosity and electrical conductivity ...................... 277
Density and molar volume ................................... 280
Diffusivity of carbon ...................................... 280
FUTURE DIRECTIONS ............................................. 282
ACKNOWLEDGMENTS ............................................... 282
REFERENCES .................................................... 283
10 Carbonate Melts and Carbonatites
Adrian P. Jones, Matthew Genge Laura Carmody
INTRODUCTION .................................................. 289
CARBONATE MELTS ............................................... 291
Physical properties ........................................ 291
Atomic structure of carbonate melts ........................ 292
Carbonate melts as ionic liquids ........................... 292
Cation electronegativity (χ) ............................... 292
Speciation ................................................. 294
Carbonate glasses .......................................... 295
Atomic simulation of carbonates ............................ 296
CARBONATITES .................................................. 296
Occurrence of carbonatites ................................. 298
Geochemistry of carbonatites ............................... 301
Carbonatite mineral deposits ............................... 304
Isotopic signatures of carbonatites ........................ 305
GENESIS OF CARBONATITE MAGMAS ................................. 308
Carbonate melt metasomatism ................................ 309
Carbonate melt crystallization of diamond .................. 310
Magmas related to carbonate melts .......................... 310
FUTURE RESEARCH ............................................... 311
Carbonatites at high-pressure .............................. 311
Melt structure of tetracarbonates? ......................... 312
ACKNOWLEDGMENTS ............................................... 312
REFERENCES .................................................... 312
11 Deep Carbon Emissions from Volcanoes
Michael R. Burton, Georgina M. Sawyer, Domenico Granieri
INTRODUCTION: VOLCANIC CO2 EMISSIONS IN THE GEOLOGICAL
CARBON CYCLE .................................................. 323
Carbon species in Earth degassing .......................... 325
METHODS FOR MEASURING GEOLOGICAL C02 EFFLUX ................... 325
Ground-based measurements of volcanic plumes ............... 325
Volcanic SO2 flux measurements ............................. 327
Airborne measurements of volcanic plumes ................... 328
Space-based measurements of volcanic plumes ................ 329
Ground-based measurements of diffuse deep CO2 .............. 329
Diffusive degassing of deep CO2 in tectonically active
areas ...................................................... 330
Submarine measurements ..................................... 331
REPORTED MEASUREMENTS OF DEEP CARBON FLUXES ................... 332
Subaerial volcanism ........................................ 332
Submarine volcanism ........................................ 340
INVENTORIES OF GLOBAL VOLCANIC DEEP CARBON FLUX:
IMPLICATIONS FOR THE GEOLOGICAL CARBON CYCLE .................. 340
Estimates of global deep carbon emission rates ............. 340
Comparison with previous estimates of subaerial volcanic
CO2 flux ................................................... 342
Balancing CO2 emission rates with weathering and
subduction rates ........................................... 342
THE ROLE OF DEEP CARBON IN VOLCANIC ACTIVITY .................. 343
Original CO2 contents of magma ............................. 343
Importance of a deep exsolved volatile phase on magma
dynamics and eruptive style ................................ 344
MAGNITUDE OF ERUPTIVE DEEP CARBON EMISSIONS ................... 344
SUMMARY ....................................................... 345
ACKNOWLEDGMENTS ............................................... 346
REFERENCES .................................................... 346
12 Diamonds and the Geology of Mantle Carbon
Steven B. Shirey, Pierre Cartigny, Daniel J. Frost,
Shantanu Keshav, Fabrizio Nestola, Paolo Nimis,
D. Graham Pearson, Nikolai V. Sobolev, Michael J. Walter
INTRODUCTION TO DIAMOND CHARACTERISTICS ....................... 355
Introduction ............................................... 355
Microscale components in diamonds .......................... 361
Internal textures in diamonds .............................. 368
DIAMOND FORMATION ............................................. 369
Experimental and thermodynamic constraints of growth
in the lithospheric mantle ................................. 369
Experimental and thermodynamic constraints of growth
in the sub-lithospheric mantle ............................. 375
Stable isotopic compositions and the formation of
diamonds ................................................... 376
INCLUSIONS HOSTED IN DIAMONDS ................................. 382
Thermobarometry ............................................ 382
Geochemistry and age ....................................... 386
GEOLOGY OF MANTLE CARBON FROM DIAMONDS ..................... 396
Geodynamics, carbon mobility and reservoirs ................ 396
OUTSTANDING QUESTIONS AND FUTURE WORK ......................... 406
ACKNOWLEDGMENTS ............................................... 406
REFERENCES .................................................... 406
13 Nanoprobes for Deep Carbon
Wendy L. Mao, Eglantine Boulard
INTRODUCTION .................................................. 423
SYNTHESIZING SAMPLES AT HIGH PRESSURES AND TEMPERATURES ....... 423
High pressure .............................................. 424
High temperature ........................................... 424
Spatial resolution ......................................... 425
EX SITU TECHNIQUES ............................................ 426
Sample preparation: FIB-SEM ................................ 426
Characterization tools ..................................... 428
IN SITU TECHNIQUES ............................................ 435
Nanoscale X-ray diffraction ................................ 436
X-ray Raman spectroscopy ................................... 438
X-ray imaging .............................................. 440
CONCLUSIONS AND OUTLOOK ....................................... 444
REFERENCES .................................................... 445
14 On the Origins of Deep Hydrocarbons
Mark A. Sephton, Robert M. Hazen
INTRODUCTION .................................................. 449
BIOGENIC ORIGINS OF DEEP HYDROCARBONS ......................... 449
Types of hydrocarbons ...................................... 449
Diagenesis and kerogen formation ........................... 450
ABIOTIC ORIGINS OF DEEP HYDROCARBONS .......................... 451
Deep gas theories .......................................... 451
Thomas Gold and the "Deep Hot Biosphere" ................... 451
Evidence for abiotic hydrocarbon synthesis ................. 452
DETERMINING SOURCE - CHEMICAL EVIDENCE ........................ 454
Pyrolysis experiments ...................................... 454
Molecular biomarkers ....................................... 455
DETERMINING SOURCE - GEOLOGIC EVIDENCE ........................ 457
Association with temperature and source rocks .............. 457
SELECTED CASE STUDIES ......................................... 458
Mountsorrel, United Kingdom ................................ 458
The Songliao Basin, China .................................. 459
CONCLUSIONS: UNRESOLVED QUESTIONS IN THE ORIGINS OF DEEP
HYDROCARBONS .................................................. 459
ACKNOWLEDGMENTS ............................................... 460
REFERENCES .................................................... 460
15 Laboratory Simulations of Abiotic Hydrocarbon Formation
in Earth's Deep Subsurface
Thomas M. McCollom
INTRODUCTION .................................................. 467
ABIOTIC HYDROCARBONS IN EARTH'S UPPER MANTLE .................. 468
The chemical and physical environment of Earth's upper
mantle ..................................................... 468
Experimental studies of hydrocarbons at mantle conditions .. 468
Implications for mantle sources of hydrocarbons ............ 473
ABIOTIC HYDROCARBON FORMATION IN CRUSTAL ENVIRONMENTS ......... 474
Chemical and physical environments for hydrocarbon
formation in the crust ..................................... 474
Fischer-Tropsch-type synthesis ............................. 476
Alternative pathways for hydrocarbon formation in the
crust ...................................................... 487
SOME DIRECTIONS FOR FUTURE STUDIES ............................ 490
ACKNOWLEDGMENTS ............................................... 490
REFERENCES .................................................... 490
16 Hydrocarbon Behavior at Nanoscale Interfaces
David R. Cole, Salim Ok, Alberto Striolo, Anh Phan
INTRODUCTION .................................................. 495
Probing C-O-H behavior with neutron scattering and NMR ..... 498
NON-AQUEOUS FLUID ADSORPTION BEHAVIOR: EXPERIMENTAL ........... 499
Background on adsorption concepts and approaches ........... 499
C-O-H pore fluid densities ................................. 501
Hydrocarbon-interfacial microstructure ..................... 503
NON-AQUEOUS FLUID DYNAMICS AT INTERFACES: EXPERIMENTAL ........ 506
QENS probe of hydrocarbons in nanopores .................... 506
NMR probes of hydrocarbons in nanopores .................... 509
Representative NMR studies ................................. 511
ATOMIC AND MOLECULAR-LEVEL SIMULATIONS ........................ 515
Properties of confined fluids: do they differ compared to
the bulk? .................................................. 515
Selected simulations of alkanes within alumina and
silica-based pores ......................................... 525
Simulation details ......................................... 531
SUMMARY AND RECOMMENDATIONS ................................... 534
ACKNOWLEDGMENTS ............................................... 535
REFERENCES .................................................... 536
17 Nature and Extent of the Deep Biosphere
Frederick S. Colwell, Steven D'Hondt
INTRODUCTION .................................................. 547
EARLY STUDIES AND COMPREHENSIVE REVIEWS ....................... 547
WHERE WE ARE NOW - THE TERROIR OF SUBSURFACE LIFE ............. 548
THE TOOLS THAT WE NEED ........................................ 550
THERE'S NO PLACE LIKE HOME .................................... 553
IS DIVERSITY THE SPICE OF SUBSURFACE LIFE? .................... 555
BIOMASS OF SUBSURFACE LIFE .................................... 557
PHYSIOLOGICAL PROCESSES OF SUBSURFACE LIFE .................... 558
WHERE AND WHEN DOES LIFE IN THE SUBSURFACE REALLY MATTER
TO US? ........................................................ 560
PROJECTIONS AND PRIORITIES FOR FUTURE STUDIES ................. 562
Imagining how we might sample and visualize deep life ...... 563
Unexplored adaptations of subsurface microbes .............. 563
Unstudied physiologies and genotypes for the subsurface .... 564
Subsurface coupling of the living and the non-living ....... 565
SUMMARY .................................................... 566
ACKNOWLEDGMENTS ............................................... 566
REFERENCES .................................................... 566
18 Serpentinization, Carbon, and Deep Life
Matthew O. Schrenk, William J. Brazelton, Susan Q. Lang
INTRODUCTION .................................................. 575
THE PROCESS OF SERPENTINIZATION ............................... 575
Physical and chemical consequences of serpentinization ..... 575
Types of serpentinizing habitats ........................... 577
BIOLOGICAL CONSEQUENCES OF SERPENTINIZATION ................... 583
Metabolic strategies in serpentinite-hosted ecosystems ..... 583
Challenges of high pH ...................................... 591
Limitations to carbon fixation ............................. 591
Sources of nutrients ....................................... 593
Microbe-mineral interactions ............................... 594
Serpentinization and the origins of life ................... 594
WHERE DOES THE ABIOTIC CARBON CYCLE END AND ВIOGEOCHEMISTRY
BEGIN? ........................................................ 597
Abiogenesis in thermodynamic and experimental studies ...... 597
Distinguishing biotic from abiotic processes ............... 598
Linking abiotic and biological processes ................... 599
COMMON THEMES AND UNCHARTED TERRITORY ......................... 600
ACKNOWLEDGMENTS ............................................... 601
REFERENCES .................................................... 601
19 High-Pressure Biochemistry and Biophysics
Filip Meersman, Isabelle Daniel, Douglas H. Bartlett,
Roland Winter Rachael Hazael, Paul F. McMillan
INTRODUCTION .................................................. 607
PROTEINS AND POLYPEPTIDES ..................................... 608
Structures of proteins and polypeptides .................... 608
Thermodynamic considerations: volume versus
compressibility arguments .................................. 609
The protein volume paradox ................................. 610
Mechanistic aspects of pressure-induced protein unfolding .. 611
Pressure effects on multimeric proteins and aggregates ..... 612
Pressure effects on protein energy landscapes .............. 613
From free energy landscapes to P-T phase diagrams .......... 616
Kinetic aspects of the phase diagram ....................... 619
Relevance of biophysical studies on proteins to deep
carbon ..................................................... 620
NUCLEIC ACIDS ................................................. 620
LIPIDS AND CELL MEMBRANES ..................................... 622
Lamellar lipid bilayer phases .............................. 622
Lipid mixtures, cholesterol, and peptides .................. 626
Nonlamellar lipid phases ................................... 628
Biological and reconstituted membranes ..................... 630
Relevance of lipid biophysics for deep carbon .............. 631
HIGH-PRESSURE MICROBIOLOGY AND BIOCHEMICAL CYCLES ............. 632
Who's down there? .......................................... 632
Genomic attributes at depth ................................ 634
Metabolism: organic matter, energy and nutrients ........... 636
ACQUISITION OF RESISTANCE TO GIGAPASCAL PRESSURES ............. 637
Exploring extreme pressure limits for life ................. 637
Acquisition of gigapascal pressure resistance by higher
organisms .................................................. 638
Resistance to extreme shock pressures ...................... 639
CONCLUSIONS ................................................... 640
ACKNOWLEDGMENTS ............................................... 640
REFERENCES .................................................... 640
Genetic diversity .......................................... 654
VIRAL IMPACTS ON HOST ECOLOGY AND EVOLUTION ................... 654
Bottom-up effects: the biogeochemical impact ............... 655
Top-down effects: altering population structure ............ 655
Viral manipulation of genetic content and expression ....... 657
VIRAL MANIPULATION OF THE DEEP SUBSURFACE BIOSPHERE ........... 658
Hydrologically active regions of the subsurface ............ 658
Deeply buried sediments .................................... 660
Viral impacts on surface-attached communities .............. 661
Tools for analysis: viral metagenomics in the deep
subsurface ................................................. 662
VENTS, VIRUSES AND THE ORIGIN OF LIFE ......................... 666
Hydrothermal vents and the deep subsurface: key settings
in the origin of life ...................................... 666
The viral role in the origin of life ....................... 667
CONCLUSION .................................................... 669
REFERENCES .................................................... 670
20 The Deep Viriosphere: Assessing the Viral Impact on
Microbial Community Dynamics in the Deep Subsurface
Rika E. Anderson, William J. Brazelton, John A. Baross
INTRODUCTION .................................................. 649
DIVERSITY IN THE VIRAL WORLD .................................. 650
Viral life cycles .......................................... 650
Viral sizes and morphologies ............................... 652
Genetic diversity .......................................... 654
VIRAL IMPACTS ON HOST ECOLOGY AND EVOLUTION ................... 654
Bottom-up effects: the biogeochemical impact ............... 655
Top-down effects: altering population structure ............ 655
Viral manipulation of genetic content and expression ....... 657
VIRAL MANIPULATION OF THE DEEP SUBSURFACE BIOSPHERE ........... 658
Hydrologically active regions of the subsurface ............ 658
Deeply buried sediments .................................... 660
Viral impacts on surface-attached communities .............. 661
Tools for analysis: viral metagenomics in the deep
subsurface ................................................. 662
VENTS, VIRUSES AND THE ORIGIN OF LIFE ......................... 666
Hydrothermal vents and the deep subsurface: key settings
in the origin of life ...................................... 666
The viral role in the origin of life ....................... 667
CONCLUSION .................................................... 669
REFERENCES .................................................... 670
|