Physics of organic semiconductors (Weinheim, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPhysics of organic semiconductors. - 2nd completely new rev. ed. / ed. by W.Brütting, Ch.Adachi. - Weinheim: Wiley-VCH, 2012. - xxiii, 634 p.: ill. - Incl. bibl. ref. - Ind.: p.623-634. - ISBN 978-3-527-41053-8
 

Оглавление / Contents
 
   Foreword ..................................................... V
   Preface ..................................................... VU
   List of Contributors ....................................... XIX

Part One   Film Growth, Electronic Structure, and Interfaces .... 1

1    Organic Molecular Beam Deposition .......................... 3
     Frank Schreiber
1.1  Introduction ............................................... 3
1.2  Organic Molecular Beam Deposition .......................... 5
     1.2.1  General Concepts of Thin Film Growth ................ 5
     1.2.2  Issues Specific to Organic Thin Film Growth ......... 6
     1.2.3  Overview of Popular OMBD Systems .................... 8
            1.2.3.1  PTCDA ...................................... 8
            1.2.3.2  DIP ........................................ 8
            1.2.3.3  Phthalocyanines ............................ 9
            1.2.3.4  Oligoacenes {Anthracene, Tetracene, and
                     Pentacene) ................................ 10
1.3  Films on Oxidized Silicon ................................. 10
     1.3.1  PTCDA .............................................. 10
     1.3.2  DIP ................................................ 11
     1.3.3  Phthalocyanines .................................... 13
     1.3.4  Pentacene .......................................... 14
1.4  Films on Aluminum Oxide ................................... 14
     1.4.1  PTCDA .............................................. 16
     1.4.2  DIP ................................................ 16
     1.4.3  Phthalocyanines .................................... 16
     1.4.4  Pentacene .......................................... 17
1.5  Films on Metals ........................................... 17
     1.5.1  PTCDA .............................................. 18
            1.5.1.1  Structure and Epitaxy of PTCDA/Ag(111) .... 18
            1.5.1.2  Comparison with Other Substrates .......... 18
            1.5.1.1  Dewetting and Thermal Properties .......... 19
            1.5.1.4  Real-Time Growth .......................... 19
     1.5.2  DIP ................................................ 21
     1.5.3  Phthalocyanines .................................... 21
     1.5.4  Pentacene .......................................... 22
1.6  Films on Other Substrates ................................. 22
1.7  More Complex Heterostructures and Technical Interfaces .... 23
     1.7.1  Inorganic-Organic Heterostructures ................. 23
     1.7.2  Organic-Organic Heterostructures ................... 24
1.8  Summary and Conclusions ................................... 28
     References ................................................ 29

2    Electronic Structure of Interfaces with Conjugated
     Organic Materials ......................................... 35
     Norbert Koch
2.1  Introduction .............................................. 35
2.2  Energy Levels of Organic Semiconductors ................... 37
2.3  Interfaces between Organic Semiconductors and Electrodes .. 40
     2.3.1  Atomically Clean Metal Electrodes .................. 41
     2.3.2  Application-Relevant Electrodes .................... 45
            2.3.2.1  Low Work Function Electrodes .............. 47
            2.3.2.2  Conducting Polymer Electrodes ............. 49
            2.3.2.3  Adjusting the Energy Level Alignment at
                     Electrodes ................................ 51
2.4  Energy Levels at Organic Semiconductor Heterojunctions .... 54
     2.4.1  Molecular Orientation Dependence ................... 54
     2.4.2  Interfacial Charge Transfer ........................ 56
     2.4.3  Electrode-Induced Pinning of Energy Levels ......... 56
     2.4.4  Molecular Dipoles for Energy Level Tuning .......... 57
2.5  Conclusions ............................................... 59
     References ................................................ 59

3    Electronic Structure of Molecular Solids: Bridge to the
     Electrical Conduction ..................................... 65
     Nobuo Ueno
3.1  Introduction .............................................. 65
3.2  General View of Electronic States of Organic Solids ....... 66
     3.2.1  From Single Molecule to Molecular Solid ............ 66
     3.2.2  Polaron and Charge Transport ....................... 69
     3.2.3  Requirement from Thermodynamic Equilibrium ......... 69
3.3  Electronic Structure in Relation to Charge Transport ...... 70
     3.3.1  Ultraviolet Photoemission Spectroscopy ............. 70
     3.3.2  Energy Band Dispersion and Band Transport
            Mobility ........................................... 73
     3.3.3  Density-of-States Effects in Polycrystalline Film .. 77
3.4  Electron-Phonon Coupling, Hopping Mobility, and Polaron
     Binding Energy ............................................ 79
     3.4.1  Basic Background ................................... 79
     3.4.2  Experimental Reorganization Energy and Polaron
            Binding Energy ..................................... 82
3.5  Summary ................................................... 86
     References ................................................ 87

4    Interfacial Doping for Efficient Charge Injection in
     Organic Semiconductors .................................... 91
     Jae-Hyun Lee and Jang-Joo Kim
4.1  Introduction .............................................. 91
4.2  Insertion of an Interfacial Layer in the Organic/
     Electrode Junction ........................................ 92
     4.2.1  Electron Injection ................................. 92
     4.2.2  Hole Injection ..................................... 95
4.3  Doped Organic/Electrode Junctions ......................... 99
     4.3.1  "Doping" in Organic Semiconductors ................. 99
     4.3.2  Dopants in Organic Semiconductors ................. 100
     4.3.3  Charge Generation Efficiencies of Dopants ......... 101
     4.3.4  Hole Injection through the p-Doped Organic
            Layer/Anode Junction .............................. 104
     4.3.5  Electron Injection through the n-Doped Organic
            Layer/Cathode Junction ............................ 108
4.4  Doped Organic/Undoped Organic Junction ................... 109
4.5  Applications ............................................. 112
     4.5.1  OLEDs ............................................. 112
     4.5.2  OPVs .............................................. 112
     4.5.3  OFETs ............................................. 114
4.6  Conclusions .............................................. 115
     References ............................................... 115

5    Displacement Current Measurement for Exploring Charge
     Carrier Dynamics in Organic Semiconductor Devices ........ 119
     Yutaka Noguchi, Yuya Tanaka, Yukimasa Miyazaki, Naoki
     Sato, Yasuo Nakayama, and Hisao Ishii
5.1  Introduction ............................................. 119
5.2  Displacement Current Measurement ......................... 123
     5.2.1  DCM for Quasi-Static States ....................... 124
            5.2.1.1  Basic Concepts of DCM .................... 124
            5.2.1.2  Trapped Charges and Injection Voltage .... 125
            5.2.1.3  Intermediate State between Depletion
                     and Accumulation ......................... 127
     5.2.2  DCM for Transient States .......................... 129
            5.2.2.1  Sweep Rate Dependence in DCM Curves ...... 130
5.3  Charge Accumulation at Organic Heterointerfaces .......... 135
     5.3.1  Elements of Charge Accumulation at Organic
            Heterointerfaces .................................. 135
     5.3.2  Interface Charges and Orientation Polarization .... 137
     5.3.3  Light-Induced Space Charges in Alq3 Film .......... 144
5.4  Conclusions .............................................. 147
     References ............................................... 149

Part Two Charge Transport ..................................... 155

6    Effects of Gaussian Disorder on Charge-Carrier
     Transport and Recombination in Organic Semiconductors .... 157
     Reinder Coehoorn and Peter A. Bobbert
6.1  Introduction ............................................. 157
6.2  Mobility Models for Hopping in a Disordered Gaussian
     DOS ...................................................... 161
     6.2.1  The Extended Gaussian Disorder Model .............. 161
     6.2.2  The Extended Correlated Disorder Model ............ 165
     6.2.3  Mobility in Host-Guest Systems .................... 166
6.3  Modeling of the Recombination Rate ....................... 169
     6.3.1  Recombination in Systems with a Gaussian DOS ...... 169
     6.3.2  Recombination in Host-Guest Systems with a
            Gaussian Host DOS ................................. 172
6.4  OLED Device Modeling ..................................... 173
     6.4.1  Single-Layer OLEDs: Analytical Drift-Only Theory .. 173
     6.4.2  The Role of Charge-Carrier Diffusion .............. 176
     6.4.3  The Role of Gaussian Disorder: One-Dimensional
            Device Simulations ................................ 179
     6.4.4  The Role of Gaussian Disorder: Three-Dimensional
            Device Simulations ................................ 182
6.5  Experimental Studies ..................................... 186
     6.5.1  Overview .......................................... 186
     6.5.2  PF-TAA-Based Polymer OLEDs ........................ 189
6.6  Conclusions and Outlook .................................. 194
     References ............................................... 196

7    Charge Transport Physics of High-Mobility Molecular
     Semiconductors ........................................... 201
     Henning Sirringhaus, Tomo Sakanoue, and Jui-Fen Chang
7.1  Introduction ............................................. 201
7.2  Review of Recent High-Mobility Small-Molecule and
     Polymer Organic Semiconductors ........................... 202
7.3  General Discussion of Transport Physics/Transport
     Models of Organic Semiconductors ......................... 208
     7.3.1  Static Disorder Parameters σ and ∑ ................ 219
7.4  Transport Physics of High-Mobility Molecular
     Semiconductors ........................................... 221
7.5  Conclusions .............................................. 234
     References ............................................... 234

8    Ambipolar Charge-Carrier Transport in Molecular Field-
     Effect Transistors ....................................... 239
     Andreas Opitz and Wolfgang Brütting
8.1  Introduction ............................................. 239
8.2  Ambipolar Charge-Carrier Transport in Blends of
     Molecular Hole- and Electron-Conducting Materials ........ 244
8.3  Ambipolar Charge-Carrier Transport in Molecular
     Semiconductors by Applying a Passivated Insulator
     Surface .................................................. 246
8.4  Electrode Variation for Ambipolar and Bipolar Transport .. 252
8.5  Applications of Bipolar Transport for Ambipolar and
     Complementary Inverters .................................. 256
8.6  Realization of Light-Emitting Transistors with Combined
     Al and TTF-TCNQ Electrodes ............................... 260
8.7  Conclusion ............................................... 261
     References ............................................... 262

9    Organic Magnetoresistance and Spin Diffusion in Organic
     Semiconductor Thin-Film Devices .......................... 267
     Markus Wohlgenannt
9.1  Introduction ............................................. 267
     9.1.1  Organization of This Chapter ...................... 268
9.2  Organic Magnetoresistance ................................ 270
     9.2.1  Dependence of Organic Magnetoresistance on
            Hyperfine Coupling Strength ....................... 271
     9.2.2  Organic Magnetoresistance in a Material with
            Strong Spin-Orbit Coupling ........................ 272
     9.2.3  Organic Magnetoresistance in Doped Devices ........ 275
     9.2.4  Conclusions for Organic Spintronics ............... 277
9.3  Theory of Spin-Orbit Coupling in Singly Charged Polymer
     Chains ................................................... 277
9.4  Theory of Spin Diffusion in Disordered Organic
     Semiconductors ........................................... 280
9.5  Distinguishing between Tunneling and Injection Regimes
     of Ferromagnet/Organic Semiconductor/Ferromagnet
     Junctions ................................................ 284
9.6  Conclusion ............................................... 289
     References ............................................... 290

Part Three  Photophysics ...................................... 295

10   Excitons at Polymer Interfaces ........................... 297
     Neil Greenham
10.1 Introduction ............................................. 297
10.2 Fabrication and Structural Characterization of Polymer
     Hetero junctions ......................................... 298
10.3 Electronic Structure at Polymer/Polymer Interfaces ....... 305
10.4 Excitons at Homointerfaces ............................... 307
10.5 Type-I Heterojunctions ................................... 312
10.6 Type-II Heterojunctions .................................. 314
10.7 CT State Recombination ................................... 319
10.8 Charge Separation and Photovoltaic Devices based on
     Polymer: Polymer Blends .................................. 322
10.9 Future Directions ........................................ 327
     References ............................................... 328

11   Electronic Processes at Organic Semiconductor
     Heterojunctions: The  Mechanism of Exciton Dissociation
     in Semicrystalline Solid-State Microstructures ........... 333
     Francis Paquin, Gianluca Latini, Maciej Sakowicz, Paul-
     Ludovic Karsenti, Linjun Wang, David Beljonne, Natalie
     Stingelin, and Carlos Silva
11.1 Introduction ............................................. 333
11.2 Experimental Methods ..................................... 334
11.3 Results and Analysis ..................................... 334
     11.3.1 Photophysics of Charge Photogeneration and
            Recombination Probed by Time-Resolved PL
            Spectroscopy ...................................... 334
            11.3.1.1 Absorption and Steady-State PL ........... 334
            11.3.1.2 Time-Resolved PL Measurements ............ 335
            11.3.1.3 Quantum Chemical Calculations ............ 341
     11.3.2 Solid-State Microstracture Dependence ............. 342
            11.3.2.1 Polymer Microstructure ................... 342
            11.3.2.2 Dependence of Time-Resolved PL on
                     Molecular Weight ......................... 344
11.4 Conclusions .............................................. 345
     References ............................................... 345

12   Recent Progress in the Understanding of Exciton
     Dynamics within Phosphorescent OLEDs ..................... 349
     Sebastian Reineke and Marc A. Baldo
12.1 Introduction ............................................. 349
12.2 Exciton Formation ........................................ 349
     12.2.1 Background ........................................ 349
     12.2.2 Spin Mixing for Higher Efficiency ................. 351
            12.2.2.1 Exciton Mixing and Phosphorescence ....... 351
            12.2.2.2 CT State Mixing and Enhanced
                     Fluorescence ............................. 352
            12.2.2.3 Thermally Activated Delayed
                     Fluorescence ............................. 355
            12.2.2.4 Summary Comparison between
                     Phosphorescence, Extrafluorescence, and
                     TADF ..................................... 357
     12.3.1 Distributing Excitons in the Organic Layer(s) ..... 357
            12.3.1.1 Excitonic Confinement: Host-Guest
                     Systems .................................. 357
            12.3.1.2 Exciton Generation Zone .................. 358
            12.3.1.3 Exciton Migration ........................ 359
            12.3.1.4 Triplet Harvesting ....................... 361
12.4 High Brightness Effects in Phosphorescent Devices ........ 362
     References ............................................... 367

13   Organometallic Emitters for OLEDs: Triplet Harvesting,
     Singlet Harvesting, Case Structures, and Trends .......... 371
     Hartmut Yersin, Andreas F. Rausch, and Rafaі Czerwieniec
13.1 Introduction ............................................. 371
13.2 Electroluminescence ...................................... 372
     13.2.1 Triplet Harvesting ................................ 372
     13.2.2 Singlet Harvesting ................................ 374
13.3 Triplet Emitters: Basic Understanding and Trends ......... 375
     13.3.1 Energy States ..................................... 376
     13.3.2 The Triplet State and Spin-Orbit Coupling ......... 378
     13.3.3 Emission Decay Time and Zero-Field Splitting:
            A General Trend ................................... 382
13.4 Case Studies: Blue Light Emitting Pt(II) and Ir(III)
     Compounds ................................................ 386
     13.4.1 Pt(II) Compounds .................................. 388
            13.4.1.1 Photophysical Properties at Ambient
                     Temperature .............................. 388
            13.4.1.2 High-Resolution Spectroscopy: Triplet
                     Substates and Vibrational Satellite
                     Structures ............................... 391
     13.4.2 Ir(III) Compounds ................................. 400
            13.4.2.1 Photophysical Properties at Ambient
                     Temperature .............................. 400
            13.4.2.2 Electronic 0-0 Transitions and Energy
                     Level Diagrams of the Emitting Triplet
                     States ................................... 402
            13.4.2.3 Vibrational Satellite Structures
                     Exemplified on Ir(4,6-dFppy)2(acac) ...... 404
            13.4.2.4 Effects of the Nonchromophoric Ligands ... 405
     13.4.3 Comparison of Photophysical Properties of Pt(II)
            and Ir(III) Compounds ............................. 407
13.5 Case Studies: Singlet Harvesting and Blue Light
     Emitting Cu(I) Complexes ................................. 408
     13.5.1 Photophysical Properties at Ambient Temperature ... 408
     13.5.2 Triplet State Emission and Thermally Activated
            Fluorescence ...................................... 411
     13.5.3 Singlet Harvesting: Cu(I) Complexes as OLED-
            Emitters .......................................... 415
13.6 Conclusion ............................................... 417
     References ............................................... 420

Part Four Device Physics ...................................... 425
14   Doping of Organic Semiconductors ......................... 427
     Björn Lüssem, Moritz Riede, and Karl Leo
14.1 Introduction ............................................. 427
14.2 Doping Fundamentals ...................................... 430
     14.2.1 p-Type Doping ..................................... 433
            14.2.1.1 Control of the Position of the Fermi
                     Level by Doping .......................... 433
            14.2.1.2 Doping Efficiency ........................ 436
     14.2.2 n-Туре Doping ..................................... 438
            14.2.2.1 n-Туре Doping Using Alkali Metals ........ 438
            14.2.2.2 n-Туре Doping Using Molecular Compounds
                     with Very High HOMO Levels ............... 440
            14.2.2.3 n-Туре Doping Using Precursors ........... 442
     14.2.3 Contacts with Doped Semiconductors ................ 446
14.3 Organic p-n Junctions .................................... 447
     14.3.1 p-n-Homojunctions ................................. 447
            14.3.1.1 Experiments .............................. 448
     14.3.2 Reverse Currents in p-n-Junctions ................. 452
14.4 OLEDs with Doped Transport Layers ........................ 454
     14.4.1 Efficiency of OLEDs ............................... 454
            14.4.1.1 External Quantum Efficiency ηq ........... 455
            14.4.1.2 Power Efficiency or Luminous Efficacy .... 457
     14.4.2 p-i-n OLEDs ....................................... 457
            14.4.2.1 Highly Efficient Monochrome Devices ...... 459
            14.4.2.2 p-i-n Devices: White OLEDs ............... 463
            14.4.2.3 Triplet Harvesting OLEDs ................. 466
            14.4.2.4 Conclusion ............................... 468
14.5 Organic Solar Cells with Doped Transport Layers .......... 468
     14.5.1 Solar Cell Characteristics ........................ 472
     14.5.2 Organic p-i-n Solar Cells ......................... 474
            14.5.2.1 Brief History of Vacuum-Deposited
                     Organic Solar Cells ...................... 474
            14.5.2.2 Advantages of Molecular Doping in OSC .... 476
            14.5.2.3 Optical Optimization ..................... 478
            14.5.2.4 Tandem Devices ........................... 479
     14.6 Conclusion .......................................... 486
     14.7 Summary and Outlook ................................. 486
     References ............................................... 488

15   Device Efficiency of Organic Light-Emitting Diodes ....... 497
     Wolfgang Brütting and Jörg Frischeisen
15.1 Introduction ............................................. 497
15.2 OLED Operation ........................................... 498
     15.2.1 OLED Architecture and Stack Layout ................ 498
     15.2.2 Working Principles of OLEDs ....................... 499
     15.2.3 OLED Materials .................................... 500
     15.2.4 White OLEDs ....................................... 502
15.3 Electroluminescence Quantum Efficiency ................... 503
     15.3.1 Factors Determining the EQE ....................... 503
     15.3.2 Luminous Efficacy ................................. 505
15.4 Fundamentals of Light Outcoupling in OLEDs ............... 506
     15.4.1 Optical Loss Channels ............................. 506
     15.4.2 Optical Modeling of OLEDs ......................... 508
     15.4.3 Simulation-Based Optimization of OLED Layer
            Stacks ............................................ 513
     15.4.4 Influence of the Emitter Quantum Efficiency ....... 515
     15.4.5 Comprehensive Efficiency Analysis of OLEDs ........ 516
15.5 Approaches to Improved Light Outcoupling ................. 520
     15.5.1 Overview of Different Techniques .................. 520
     15.5.2 Reduction of Surface Plasmon Losses ............... 522
            15.5.2.1 Basic Properties of SPPs ................. 522
            15.5.2.2 Scattering Approaches .................... 523
            15.5.2.3 Index Coupling ........................... 524
            15.5.2.4 Emitter Orientation ...................... 529
15.6 Conclusion ............................................... 533
     References ............................................... 534

16   Light Outcoupling in Organic Light-Emitting Devices ...... 541
     Chih-Hung Tsai and Chung-Chih Wu
16.1 Introduction ............................................. 541
16.2 Theories and Properties of OLED Optics ................... 542
16.3 A Few Techniques and Device Structures to Enhance Light
     Outcoupling of OLEDs ..................................... 544
     16.3.1 Second-Antinode OLED .............................. 544
     16.3.2 Top-Emitting OLEDs Capped with Microlens or
            Scattering Layers ................................. 549
     16.3.3 OLED with Internal Scattering ..................... 554
     16.3.4 OLED Utilizing Surface Plasmon Polariton-
            Mediated Energy Transfer .......................... 561
16.4 Summary .................................................. 571
     References ............................................... 571

17   Photogeneration and Recombination in Polymer Solar
     Cells .................................................... 575
     Carsten Deibel, Andreas Baumann, and Vladimir Dyakonov
17.1 Introduction ............................................. 575
17.2 Photogeneration of Charge Carriers ....................... 577
17.3 Charge Carrier Transport in Disordered Organic
     Semiconductors ........................................... 583
17.4 Recombination of Photogenerated Charge Carriers .......... 588
17.5 Open-Circuit Voltage ..................................... 593
17.6 Summary .................................................. 595
References .................................................... 595

18   Light-Emitting Organic Crystal Field-Effect Transistors
     for Future Organic Injection Lasers ...................... 603
     Hajime Nakanotani and Chihaya Adachi
18.1 Introduction ............................................. 603
18.2 Highly Photoluminescent Oligo(p-phenylenevinylene)
     Derivatives .............................................. 608
18.3 Ambipolar Light-Emitting Field-Effect Transistors Based
     on Organic Single Crystals ............................... 610
     18.3.1 Ambipolar Carrier Transport Characteristics of
            Single Crystals of OPV Derivatives ................ 610
     18.3.2 EL Characteristics of LE-OFETs Based on Organic
            Single Crystals ................................... 611
     18.3.3 Tuning of Carrier Density by Interfacial Carrier
            Doping in Single Crystals of OPV Derivatives ...... 613
            18.3.3.1 Interfacial Carrier Doping Based on
                     Electron Transfer from an Organic
                     Single Crystal into a MoOx Layer ......... 613
            18.3.3.2 Application of Interfacial Carrier
                     Doping for Ambipolar LE-OFETs ............ 614
            18.3.3.3 Estimation of Singlet Exciton Density
                     in the Recombination Zone ................ 616
18.4 Summary and the Outlook for Future Organic Injection
     Lasers ................................................... 617
     References ............................................... 619

     Index .................................................... 623


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:04 2019. Размер: 31,058 bytes.
Посещение N 1511 c 03.12.2013