Multifunctional oxide heterostructures (Oxford, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMultifunctional oxide heterostructures / ed. by E.Y.Tsymbal, E.R.A.Dagotto, C.-B.Eom, R.Ramesh. - Oxford: Oxford University Press, 2012. - xvi, 396 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.389-396. - ISBN 978-0-19-958412-3
 

Оглавление / Contents
 
List of contributors ........................................... xv

PART I FUNDAMENTALS

1  A brief introduction to strongly correlated electronic
   materials .................................................... 3
   E. DAGOTTO and Y. TOKURA
   1.1  Motivation .............................................. 3
   1.2  Introduction ............................................ 3
   1.3  Why correlated electrons? ............................... 5
   1.4  Control of correlated electrons in complex oxides ....... 6
   1.5  Ordering of charge, spin, and orbital degrees of
        freedom ................................................ 11
   1.6  Model Hamiltonians ..................................... 14
   1.7  Intrinsically inhomogeneous states ..................... 15
   1.8  Giant responses in correlated electron systems ......... 18
   1.9  Importance of quenched disorder and strain ............. 24
   1.10 Outlook for correlated-electron technology:
        spintronics, double perovskites, multiferroics,
        orbitronics, resistance switching ...................... 28
   1.11 Conclusions ............................................ 32
   Acknowledgments ............................................. 32
   References .................................................. 32

2  Magnetoelectric coupling and multiferroic materials ......... 38
   Gustau CATALAN and James F. SCOTT
   2.1  Introduction: magnetoelectric coupling and
        multiferroic materials ................................. 38
   2.2  Magnetoelectric coupling ............................... 40
        2.2.1  Linear coupling: Dzyaloshinskii-Moriya effect,
               electrically induced spin canting, and
               Shtrikman limit ................................. 41
        2.2.2  Biquadratic (strain mediated) coupling .......... 42
        2.2.3  Perovskite oxides: why are they seldom
               multiferroic? ................................... 43
   2.3  Magnetoelectric multiferroics .......................... 44
        2.3.1  Perovskites with ferroelectricity caused by
               lone-pair polarization: BiFeO3 .................. 44
        2.3.2  Oxides with ferroelectricity caused by spins
               spirals: ТbМnО3, TbMn2O5 ........................ 46
        2.3.3  Hexagonal multiferroics: YMnО3 .................. 46
        2.3.4  Unconfirmed oxide multiferroics: RNiO3 (R =
               rare earth or Bi) ............................... 47
        2.3.5  Magnetoelectric relaxors ........................ 48
        2.3.6  Ferromagnetic ferroelectric fluorides ........... 51
        2.3.7  Ferrimagnetic ferroelectrics .................... 55
   Appendix 2.1 Magnetoelectric measurements ................... 57
   Appendix 2.2 Critical exponents in isostructural phase
        transitions ............................................ 59
   References .................................................. 61

PART II OXIDE FILMS AND INTERFACES: GROWTH AND CHARACTERIZATION

3  Synthesis of epitaxial multiferroic oxide thin films ........ 73
   Thomas TYBELL and Chang-Beom EOM
   3.1  Introduction ........................................... 73
   3.2  Substrates ............................................. 75
        3.2.1  Strain, orientation, and symmetry control by
               choice of substrate ............................. 75
        3.2.2  Substrate termination and surface quality ....... 77
   3.3  Strain engineering as a tool for controlling
        functional oxide thin films ............................ 79
        3.3.1  SrRuO3 - a case study of strain engineering ..... 80
        3.3.2  Effect of defects ............................... 86
   3.4  Vicinal control of functional properties ............... 86
        3.4.1  SrRuO3 - a case study of vicinal control of
               orthorhombic domain structure ................... 87
        3.4.2  BiFeO3 - domain control of a prototype
               rhombohedral material by substrate miscut ....... 88
        3.4.3  Mono-domain samples—enabling fundamental
               studies and enhanced properties of BiFeO3 ....... 91
   3.5  Conclusions ............................................ 95
   Acknowledgments ............................................. 96
   References .................................................. 96

4  Synchrotron X-ray scattering studies of oxide
   heterostructures ............................................ 99
   Dillon D. FONG
   4.1  Introduction ........................................... 99
   4.2  Surface X-ray diffraction ............................. 100
   4.3  Resonant scattering ................................... 105
   4.4  Anisotropic effects ................................... 115
   4.5  Summary ............................................... 118
   Acknowledgments ............................................ 118
   References ................................................. 118

5  Scanning transmission electron microscopy of oxides ........ 123
   M. VARELA, C. LEON, J. SANTAMARIA, and S.J. PENNYCOOK
   5.1  Introduction to STEM .................................. 123
   5.2  STEM imaging .......................................... 128
        5.2.1  Probe formation ................................ 129
        5.2.2  Time reversal symmetry in electron microscopy .. 130
        5.2.3  Image simulation ............................... 131
   5.3  Mapping materials properties through EELS fine
        structure ............................................. 135
   5.4  Applications: interfaces in manganite/cuprate
        heterostructures ...................................... 138
   5.5  Summary ............................................... 150
   Acknowledgments ............................................ 150
   References ................................................. 151

6  Advanced modes of piezoresponse force microscopy for
   ferroelectric nanostructures ............................... 157
   A. GRUVERMAN
   6.1  Introduction .......................................... 157
   6.2  Ferroelectric structures and size effects ............. 158
   6.3  Advanced modes of PFM ................................. 162
        6.3.1  Resonance-enhanced PFM: static domain imaging .. 162
        6.3.2  Stroboscopic PFM: domain switching dynamics .... 165
        6.3.3  PFM Spectroscopy: spatial variability of
               switching parameters ........................... 170
   6.4  Summary ............................................... 174
   Acknowledgments ............................................ 175
   References ................................................. 175

PART III OXIDE FILMS AND INTERFACES: FUNCTIONAL PROPERTIES

7  General considerations of the electrostatic boundary
   conditions in oxide heterostructures ....................... 183
   Takuya HIGUCHI and Harold Y. HWANG
   7.1  Introduction .......................................... 183
   7.2  The polar discontinuity picture ....................... 185
        7.2.1  Stability of ionic crystal surfaces ............ 185
        7.2.2  Stability of covalent surfaces ................. 187
        7.2.3  Polar semiconductor interfaces ................. 188
   7.3  Metallic conductivity between two insulators .......... 192
        7.3.1  The polar discontinuity scenario ............... 193
        7.3.2  Oxygen vacancy formation during growth ......... 194
        7.3.3  Intermixing and local bonding at the
               interface ...................................... 194
        7.3.4  Reconciling the various mechanisms ............. 196
   7.4  The local charge neutrality picture ................... 196
        7.4.1  Unit-cells in ionic crystals ................... 196
        7.4.2  LaAlO3/SrTiO3 in the local charge neutrality
               picture ........................................ 198
        7.4.3  Coupling of polar discontinuities .............. 199
        7.4.4  Modulation doping by a proximate polar
               discontinuity .................................. 201
        7.4.5  Advantages of the local charge neutrality
               picture ........................................ 202
   7.5  Equivalence of the two pictures ....................... 203
        7.5.1  Gauss' law for infinite crystals ............... 203
        7.5.2  Gauss' law for finite crystals ................. 204
   7.6  Further discussions ................................... 205
        7.6.1  Effect of interdiffusion ....................... 205
        7.6.2  Role of correlation effects .................... 207
        7.6.3  Quadrupolar discontinuity ...................... 207
   7.7  Summary ............................................... 209
   Acknowledgments ............................................ 210
   References ................................................. 210

8  Strongly correlated heterostructures ....................... 214
   Satoshi OKAMOTO
   8.1  Introduction .......................................... 214
   8.2  Theoretical description ............................... 218
        8.2.1  Model .......................................... 218
        8.2.2  Layer-extension of dynamical-mean-field
               theory ......................................... 222
        8.2.3  Auxiliary particle methods...................... 225
   8.3  Mott-insulator/band-insulator heterostructures ........ 226
        8.3.1  Lattice relaxation and charge redistribution ... 226
        8.3.2  Mott physics ................................... 229
   8.4  Superlattices of under-doped-cuprate/over-doped-
        cuprate ............................................... 232
   8.5  Other directions ...................................... 236
        8.5.1  Surface magnetism of double-exchange
               manganites ..................................... 237
        8.5.2  Transport through two-terminal strongly
               correlated heterostructures .................... 240
   8.6  Summary ............................................... 243
   Acknowledgments ............................................ 245
   References ................................................. 245

9  Manganite multilayers ...................................... 254
   Anand BHATTACHARYA, Shuai DONG, and Rong YU
   9.1  Motivation ............................................ 254
   9.2  Introduction to manganites ............................ 255
   9.3  Theoretical description of manganite multilayers ...... 256
   9.4  Synthesis and structure of manganite multilayers ...... 259
   9.5  Recent progress on manganite multilayers .............. 262
        9.5.1  Phase transitions and orbital order driven
               by strain ...................................... 262
        9.5.2  Charge transfer and spin-polarized two-
               dimensional electron gas ....................... 265
        9.5.3  A-site ordering in short-period superlattices .. 267
        9.5.4  Tuning between ferromagnetism and
               antiferromagnetism ............................. 273
        9.5.5  Interfacial magnetism .......................... 276
        9.5.6  Metal-insulator transitions .................... 278
        9.5.7  Half-manganite heterostructures: band lineup
               and magnetic interactions at interfaces ........ 285
   9.6  Conclusions and outlook ............................... 290
   Acknowledgments ............................................ 291
   References ................................................. 291

10 Thermoelectric oxides: films and heterostructures .......... 296
   Hiromichi OHTA and Kunihito KOUMOTO
   10.1 Introduction .......................................... 296
   10.2 p-type layered cobalt oxide: Са3Со4O9 films ........... 297
   10.3 Heavily electron doped БгТЮз films .................... 300
   10.4 Two-dimensional electron gas .......................... 306
   10.5 Field effect thermopower modulation ................... 309
   10.6 Summary ............................................... 312
   References ................................................. 312

PART IV APPLICATIONS

11 High-k gate dielectrics for advanced CMOS .................. 319
   Suman DATTA and Darrell G. SCHLOM
   11.1 Introduction .......................................... 319
   11.2 High-k dielectric materials ........................... 322
   11.3 Metal-gate electrodes ................................. 323
        11.3.1 Poly-depletion elimination ..................... 323
        11.3.2 Interfacial layer control ...................... 323
        11.3.3 High-x: phonon screening ....................... 324
        11.3.4 Metal gates with "correct" work function ....... 325
   11.4 High-k/metal-gate silicon FETs ........................ 326
        11.4.1 Integration .................................... 326
        11.4.2 Devices ........................................ 329
        11.4.3 Reliability .................................... 329
   11.5 High-k/metal-gate nonsilicon FETs ..................... 330
        11.5.1 Integration .................................... 330
        11.5.2 Devices and characterization ................... 331
   Acknowledgments ............................................ 334
   References ................................................. 335

12 FeFET and ferroelectric random access memories ............. 340
   Hiroshi ISHIWARA
   12.1 Overview of ferroelectric random access memories
        (FeRAMs) .............................................. 340
   12.2 Ferroelectric films used for FeRAMs ................... 342
        12.2.1 Properties necessary for FeRAMs ................ 342
        12.2.2 Pb(Zr,Ti)O3 and Bi-layer structured
               ferroelectrics ................................. 344
        12.2.3 Novel ferroelectric films with large remanent
               polarization ................................... 346
   12.3 Cell structure and operation principle of capacitor-
        type FeRAMs ........................................... 349
        12.3.1 Cell structure of 1T1C(2T2C)-type FeRAMs ....... 349
        12.3.2 Operation principle of 1T1C(2T2C)-type FeRAMs .. 352
        12.3.3 Other capacitor-type FeRAMs .................... 354
   12.4 Cell structure and operation principle of FET-type
        FeRAMs ................................................ 357
        12.4.1 Optimization of FeFET structure ................ 357
        12.4.2 Data retention characteristics of FeFETs ....... 358
        12.4.3 Cell array structures .......................... 360
   References ................................................. 362

13 LaAlO3/SrTiO3-based device concepts ........................ 364
   Daniela F. BOGORIN, Patrick IRVIN, Cheng CEN, and Jeremy
   LEVY
   13.1 Introduction .......................................... 364
        13.1.1 Semiconductor 2DEGs ............................ 365
        13.1.2 2DEG at LaAlO3/SrTiO3 interface ................ 365
        13.1.3 Polar catastrophe model ........................ 365
        13.1.4 Metal-insulator transition in LaAlO3/SrTiO3 .... 366
        13.1.5 Inconsistencies with the polar catastrophe model 367
   13.2 Field-effect devices .................................. 368
        13.2.1 SrTiO3-based channels .......................... 368
        13.2.2 Electrical gating of LaAlO3/SrTiO3 structures .. 368
        13.2.3 LaAlO3/SrTiO3-based field-effect devices ....... 370
   13.3 Reconfigurable nanoscale devices ...................... 370
        13.3.1 Nanoscale writing and erasing .................. 371
        13.3.2 "Water cycle" .................................. 372
        13.3.3 LaAlO3/SrTiO3 as a floating-gate transistor
               network ........................................ 373
        13.3.4 Quasi-0D structures ............................ 375
        13.3.5 Designer potential barriers .................... 375
        13.3.6 SketchFET ...................................... 376
        13.3.7 Nanoscale photodetectors ....................... 378
        13.3.8 Integration of LaAlO3/SrTiO3 with silicon ...... 379
   13.4 Future prospects ...................................... 381
        13.4.1 Room-temperature devices ....................... 382
        13.4.2 Information processing ......................... 382
        13.4.3 Spintronics .................................... 382
        13.4.4 Quantum Hall regime ............................ 383
        13.4.5 Superconducting devices ........................ 383
        13.4.6 Solid-state Hubbard simulators ................. 383
   References ................................................. 384

Index ......................................................... 389


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:04 2019. Размер: 21,229 bytes.
Посещение N 1402 c 03.12.2013