| Atom probe microscopy / B.Gault, M.P.Moody, J.M.Cairney, S.P.Ringer. - New York: Springer, 2012. - xxiii, 396 p.: ill. - (Springer series in materials science; 160). - Incl. bibl. ref. - Ind.: p.387-396. - ISBN 978-1-4614-3435-1; ISSN 0933-033X
|
Part I Fundamentals
1 Introduction ................................................. 3
References ................................................... 7
2 Field Ion Microscopy ......................................... 9
2.1 Principles .............................................. 9
2.1.1 Theory of Field Ionisation ...................... 10
2.1.2 "Seeing" Atoms: Field Ion Microscopy ............ 11
2.1.3 Spatial Resolution of FIM ....................... 16
2.2 Instrumentation and Techniques for FIM ................. 18
2.2.1 FIM Instrumentation ............................. 18
2.2.2 eFIM or Digital FIM ............................. 19
2.2.3 Tomographic FIM Techniques ...................... 20
2.3 Interpretation of FIM Images ........................... 21
2.3.1 Interpretation of the Image in a Pure Material .. 21
2.3.2 Interpretation of the Image for Alloys .......... 22
2.3.3 Selected Applications of the FIM ................ 23
2.3.4 Summary ......................................... 27
References ............................................. 27
3 From Field Desorption Microscopy to Atom Probe Tomography ... 29
3.1 Principles ............................................. 29
3.1.1 Theory of Field Evaporation ..................... 29
3.1.2 "Analysing" Atoms one-by-one: Atom Probe
Tomography ...................................... 39
3.2 Instrumentation and Techniques for APT ................. 43
3.2.1 Experimental Setup .............................. 43
3.2.2 Field Desorption Microscopy ..................... 47
3.2.3 HV-Pulsing Techniques ........................... 50
3.2.4 Laser-Pulsing Techniques ........................ 52
3.2.5 Energy-Compensation Techniques .................. 62
References ............................................. 64
Part II Practical Aspects
4 Specimen Preparation ........................................ 71
4.1 Introduction ........................................... 71
4.1.1 Sampling Issues in Microscopy for Materials
Science and Engineering ......................... 72
4.1.2 Specimen Requirements ........................... 73
4.2 Polishing Methods ...................................... 74
4.2.1 The Electropolishing Process .................... 74
4.2.2 Chemical Polishing .............................. 79
4.2.3 Safety Considerations ........................... 79
4.2.4 Advantages and Limitations ...................... 81
4.3 Broad Ion-Beam Techniques .............................. 81
4.4 Focused Ion-Beam Techniques ............................ 82
4.4.1 Cut-Away Methods ................................ 83
4.4.2 Lift-out Methods ................................ 88
4.4.3 The Final Stages of FIB Preparation ............. 96
4.4.4 Understanding and Minimising Ion-Beam Damage
and Other Artefacts ............................. 96
4.5 Deposition Methods for Preparing Coatings and Films ... 101
4.6 Methods for Preparing Organic Materials ............... 101
4.6.1 Polymer Microtips .............................. 101
4.6.2 Self-assembled Monolayers ...................... 102
4.6.3 Cryo-Preparation ............................... 103
4.7 Other Methods ......................................... 104
4.7.1 Dipping ........................................ 104
4.7.2 Direct Growth of Suitable Structures ........... 104
4.8 Issues Associated with Specimen Geometry .............. 104
4.8.1 Influence of Specimen Geometry on Data
Quality ........................................ 104
4.9 A Guide to Selecting an Optimal Method for Specimen
Preparation ........................................... 106
References ............................................ 107
5 Experimental Protocols in Field Ion Microscopy ............. 111
5.1 Step-by-Step Procedures for FIM ....................... 111
5.2 Operational Space of the Field Ion Microscope ......... 114
5.2.1 Imaging-Gas .................................... 114
5.2.2 Temperature
5.2.3 The "Best Image Field" ......................... 116
5.2.4 Other Parameters ............................... 117
5.3 Summary ............................................... 119
References ................................................. 119
6 Experimental Protocols in Atom Probe Tomography ............ 121
6.1 Specimen Alignment .................................... 121
6.2 Aspects of Mass Spectrometry .......................... 123
6.2.1 Detection of the Ions .......................... 123
6.2.2 Mass Spectra ................................... 124
6.2.3 Formation of the Mass Spectrum ................. 125
6.2.4 Mass Resolution ................................ 127
6.2.5 Common Artefacts ............................... 129
6.2.6 Elemental Identification ....................... 132
6.2.7 Measurement of the Composition ................. 135
6.2.8 Detectability .................................. 136
6.3 Operational Space ..................................... 136
6.3.1 Flight Path .................................... 137
6.3.2 Pulse Fraction and Base Temperature ............ 137
6.3.3 Selecting the Pulsing Mode ..................... 139
6.3.4 Pulsing Rate ................................... 140
6.3.5 Detection Rate ................................. 141
6.4 Specimen Failure ...................................... 142
6.5 Assessment of Data Quality ............................ 144
6.5.1 Field Desorption map ........................... 145
6.5.2 Mass Spectrum .................................. 146
6.5.3 Multiple Events ................................ 150
6.6 Discussion ............................................ 151
References ................................................. 153
7 Tomographic Reconstruction ................................. 157
7.1 Projection of the Ions ................................ 157
7.1.1 Estimation of the Electric Field ............... 158
7.1.2 Field Distribution ............................. 159
7.1.3 Ion Trajectories ............................... 160
7.1.4 Point-Projection Model ......................... 162
7.1.5 Radial Projection with Angular Compression ..... 163
7.1.6 Which Is the Best Model of Ion Trajectories? ... 164
7.2 Reconstructioa ........................................ 165
7.2.1 Fundamentals of the Reconstruction Protocol .... 166
7.2.2 Bas et al. Protocol ............................ 169
7.2.3 Geiser et al. Protocol ......................... 171
7.2.4 Gault et al. Protocol .......................... 172
7.2.5 Reflectron-Fitted Instruments .................. 172
7.2.6 Summary and Discussion ......................... 173
7.3 Calibration of the Reconstruction ..................... 174
7.3.1 Techniques for Calibrating the Reconstruction
Parameters ..................................... 174
7.3.2 Importance of Calibrating the Reconstruction ... 179
7.3.3 Limitations of the Current Procedures .......... 181
7.4 Common Artefacts and Potential Corrections ............ 185
7.4.1 Trajectory Aberrations and Local
Magnification Effects .......................... 185
7.4.2 Surface Migration .............................. 188
7.4.3 Chromatic Aberrations .......................... 190
7.4.4 Impact of These Artefact on Atom Probe Data .... 190
7.4.5 Correction of the Reconstruction ............... 190
7.5 Perspectives on the Reconstruction in Atom Probe
Tomography ............................................ 194
7.5.1 Advancing the Reconstruction by Correlative
Microscopy ..................................... 195
7.5.2 Improving Reconstructions with Simulations ..... 197
7.5.3 Alternative Ways to Reconstruct Atom Probe
Data ........................................... 197
7.6 Spatial Resolution in APT ............................. 198
7.6.1 Introduction ................................... 198
7.6.2 Means of Investigation ......................... 198
7.6.3 Definition of the Spatial Resolution ........... 199
7.6.4 Depth Resolution ............................... 199
7.6.5 Lateral Resolution ............................. 201
7.6.6 Optimisation of the Spatial Resolution ......... 202
7.7 Lattice Rectification ................................. 204
References ................................................. 205
Part III Applying Atom Probe Techniques for Materials
Science
8 Analysis Techniques for Atom Probe Tomography .............. 213
8.1 Characterising the Mass Spectrum ...................... 213
8.1.1 Noise Reduction ................................ 214
8.1.2 Quantifying Peak Contributions from Isotopic
Natural Abundances ............................. 219
8.1.3 Spatially Dependent Identification of Mass
Peaks .......................................... 221
8.1.4 Analyses of Multi-hit Detector Events .......... 222
8.2 Characterising the Chemical Distribution .............. 225
8.2.1 Quality of Atom Probe Data ..................... 226
8.2.2 Random Comparators ............................. 228
8.3 Grid-Based Counting Statistics ........................ 230
8.3.1 Voxelisation ................................... 230
8.3.2 Density ........................................ 232
8.3.3 Concentration Analyses ......................... 232
8.3.4 Smoothing by Delocalisation .................... 233
8.3.5 Visualisation Techniques Based on
Isoconcentration and Isodensity ................ 233
8.3.6 One-Dimensional Profiles ....................... 235
8.3.7 Grid-Based Frequency Distribution Analyses ..... 242
8.4 Techniques for Describing Atomic Architecture ......... 253
8.4.1 Nearest Neighbour Distributions ................ 253
8.4.2 Cluster Identification Algorithms .............. 260
8.4.3 Influence of Detection Efficiency on
Nanostructural Analyses ........................ 274
8.5 Radial-Distributions .................................. 280
8.5.1 Radial-Distribution and Pair Correlation
Functions ...................................... 280
8.5.2 Solute Short-Range Order Parameters ............ 284
8.6 Structural Analyses ................................... 286
8.6.1 Fourier Transforms for APT ..................... 287
8.6.2 Spatial Distribution Maps ...................... 288
8.6.3 Hough Transform ................................ 292
References ................................................. 294
9 Atom Probe Microscopy and Materials Science ................ 299
9.1 Phase Composition ..................................... 301
9.2 Crystal Defects ....................................... 301
9.3 Solute-Atom Clustering and Short Range Order .......... 302
9.4 Precipitation Reactions ............................... 303
9.5 Long-Range Order ...................................... 304
9.6 Spinodal Decomposition ................................ 304
9.7 Interfaces ............................................ 305
9.8 Amorphous Materials ................................... 306
9.9 Atom Probe Crystallography ............................ 306
References ................................................. 309
Appendices .................................................... 313
A. Appendix: χ2 Distribution .................................. 313
References ................................................. 318
B. Appendix: Polishing Chemicals and Conditions ............... 319
References ................................................. 321
C. Appendix: File Formats Used in APT ......................... 322
POS ........................................................ 322
EPOS ....................................................... 323
RNG ........................................................ 324
RRNG ....................................................... 325
АТО ........................................................ 325
ENV ........................................................ 326
PoSAP ...................................................... 328
Cameca Root Files: RRAW, RHIT, ROOT ........................ 328
D. Appendix: Image Hump Model Predictions ..................... 330
E. Appendix: Essential Crystallography for APT ................ 332
Bravais Lattices ........................................... 332
Notation ................................................... 332
Structure Factor (F) Rules for bcc, fcc, hcp ............... 332
Interplanar Spacings (dhkl) ................................ 333
Interplanar Angles (ø) ..................................... 335
F. Appendix: Stereographic Projections and Commonly Observed
Desorption Maps ............................................ 338
Stereographic Projection for the Most Commonly Found
Structures and Orientations ................................ 339
References ................................................. 351
G. Appendix: Periodic Tables .................................. 352
H. Appendix: Kingham CURVES ................................... 356
References ................................................. 356
I. Appendix: List of Elements and Associated Mass to Charge
Ratios ..................................................... 363
J. Appendix: Possible Element Identity of Peaks as a
Function of their Location in the Mass Spectrum ............ 370
Index ......................................................... 387
|
|