| Nikjoo H. Interaction of radiation with matter / H.Nikjoo, Sh.Uehara, D.Emfietzoglou. - Boca Raton: CRC Press, 2012. - xv, 348 p.: ill. - Incl. bibl. ref. - Ind.: p.341-348. - ISBN 978-1-4398-5357-3
|
Preface ...................................................... XIII
About the Authors .............................................. XV
Section I
1 Introduction ................................................. 3
1.1 Radiation Transport Codes ............................... 5
1.1.1 Amorphous Track Codes ............................ 8
1.1.2 Condensed History Monte Carlo (CHMC) Codes ....... 8
1.1.3 3D and 4D Monte Carlo Track Structure Codes ..... 10
Questions ................................................... 11
References .................................................. 11
2 Basic Knowledge of Radiation ................................ 15
2.1 Definitions of Radiation ............................... 15
2.2 Electron Volt .......................................... 16
2.3 Special Theory of Relativity ........................... 17
2.4 Electromagnetic Wave and Photon ........................ 19
2.5 Interaction Cross Sections ............................. 21
2.6 Quantities and Units of Radiation ...................... 24
2.6.1 Relevant to Radiation Fields .................... 24
2.6.2 Relevant to Interactions ........................ 25
2.6.2.1 Cross Section (σ) ...................... 25
2.6.2.2 Mass Attenuation Coefficient (μ/р) ..... 25
2.6.2.3 Mass Energy Transfer Coefficient
(μtr/р) ................................ 26
2.6.2.4 Mass Energy Absorption Coefficient
(μen/p) ................................ 26
2.6.2.5 Total Mass Stopping Power (S/p) ........ 26
2.6.2.6 LET (Linear Energy Transfer) or
Restricted Linear Collision Stopping
Power (LΔ) ............................. 27
2.6.2.7 Radiation Chemical Yield (G) ........... 27
2.6.2.8 Average Energy per Ion Pair (W) ........ 27
2.6.3 Relevant to Doses ............................... 27
2.6.3.1 Energy Imparted (ε) .................... 27
2.6.3.2 Absorbed Dose (D) ...................... 28
2.6.3.3 Absorbed Dose Rate (Ḋ) ................. 28
2.6.3.4 Kerma(K) ............................... 28
2.6.3.5 Kerma Rate(K) .......................... 29
2.6.3.6 Exposure (X) ........................... 29
2.6.3.7 Exposure Rate (Ẋ) ...................... 29
2.6.3.1 2.6A Relevant to Radioactivities ..... 29
2.6.4.1 Decay Constant (λ) ..................... 29
2.6.4.2 Activity (A) ........................... 30
2.6.4.3 Air Kerma Rate Constant (Гδ) ........... 31
2.6.4.4 Exposure Rate Constant (Г'δ) ........... 32
2.6.5 Relevant to Radiation Protection ................ 32
2.6.5.1 Dose Equivalent (H) .................... 32
2.7 Summary ................................................ 33
Questions ................................................... 34
References .................................................. 34
For Further Reading ......................................... 34
3 Atoms ....................................................... 35
3.1 Atomic Nature of Matter ................................ 35
3.2 Rutherford's Atomic Model .............................. 36
3.3 Bohr's Quantum Theory .................................. 37
3.4 Quantum Mechanics ...................................... 39
3.4.1 de Broglie Wave of Electrons .................... 39
3.4.2 Uncertainty Principle ........................... 40
3.4.3 Schrodinger Equation ............................ 41
3.4.4 Wavef unction ................................... 43
3.5 Atomic Structure ....................................... 44
3.5.1 Electron Orbit .................................. 44
3.5.2 Pauli's Exclusion Principle ..................... 45
3.6 Summary ................................................ 46
Questions ................................................... 47
For Further Reading ......................................... 47
4 Atomic Nucleus .............................................. 49
4.1 Constituents of Nucleus ................................ 49
4.2 Binding Energy of Nucleus .............................. 49
4.3 Nuclear Models ......................................... 51
4.3.1 Liquid Drop Model ............................... 51
4.3.2 Shell Model ..................................... 52
4.3.3 Collective Model ................................ 53
4.4 Nuclear Reaction ....................................... 54
4.4.1 Characteristics ................................. 54
4.4.2 Cross Section ................................... 55
4.4.3 Threshold Value of Reaction ..................... 56
4.5 Nuclear Fission ........................................ 57
4.6 Nuclear Fusion ......................................... 58
4.7 Summary ................................................ 59
Questions ................................................... 60
For Further Reading ......................................... 60
5 Radioactivity ............................................... 61
5.1 Types of Radioactivity ................................. 61
5.1.1 α-Decay ......................................... 61
5.1.2 β- Decay ........................................ 63
5.1.3 γ-Decay ......................................... 65
5.1.4 Internal Conversion ............................. 65
5.1.5 β+ Decay ........................................ 66
5.1.6 Electron Capture ................................ 67
5.1.7 Radiative and Nonradiative Transitions .......... 69
5.2 Formulas of Radioactive Decay .......................... 71
5.2.1 Attenuation Law ................................. 71
5.2.2 Specific Activity ............................... 73
5.2.3 Radioactive Equilibrium ......................... 73
5.2.3.1 Secular Equilibrium .................... 73
5.2.3.2 General Formula ........................ 74
5.2.3.3 Transient Equilibrium .................. 74
5.2.3.4 Nonequilibrium ......................... 75
5.3 Summary ................................................ 75
Questions ................................................... 75
References .................................................. 76
For Further Reading ......................................... 76
6 X-Rays ...................................................... 77
6.1 Generation of X-Rays ................................... 77
6.2 Continuous X-Rays ...................................... 79
6.3 Characteristic X-Rays .................................. 80
6.4 Auger Electrons ........................................ 81
6.5 Synchrotron Radiation .................................. 82
6.6 Diffraction by Crystal ................................. 84
6.7 Summary ................................................ 86
Questions ................................................... 87
For Further Reading ......................................... 87
7 Interaction of Photons with Matter .......................... 89
7.1 Types of Interaction ................................... 89
7.1.1 Thomson Scattering .............................. 89
7.1.2 Photoelectric Effect ............................ 89
7.1.3 Compton Scattering .............................. 90
7.1.4 Pair Creation ................................... 92
7.1.5 Photonuclear Reaction ........................... 93
7.2 Attenuation Coefficients ............................... 94
7.3 Half-Value Layer of X-Rays ............................. 96
7.4 Mass Energy Absorption Coefficients .................... 98
7.5 Summary ............................................... 101
Questions .................................................. 102
For Further Reading ........................................ 102
8 Interaction of Electrons with Matter ....................... 103
8.1 Energy Loss of Charged Particles ...................... 103
8.2 Collision Stopping Power .............................. 105
8.3 Radiative Stopping Power .............................. 108
8.4 Ranges ................................................ 110
8.5 Multiple Scattering ................................... 112
8.6 Cerenkov Radiation .................................... 115
8.7 Summary ............................................... 117
Questions .................................................. 117
For Further Reading ........................................ 118
9 Interaction of Heavy Charged Particles with Matter ......... 119
9.1 Collision Stopping Powers ............................. 119
9.2 Nuclear Stopping Powers ............................... 123
9.3 Ranges ................................................ 126
9.4 Straggling of Energy Loss and Range ................... 128
9.5 Summary ............................................... 129
Questions .................................................. 130
References ................................................. 130
For Further Reading ........................................ 130
10 5-Ray, Restricted Stopping Power, and LET .................. 131
10.1 5-Ray ................................................. 131
10.2 Restricted Stopping Power ............................. 132
10.3 LET ................................................... 135
10.4 Summary ............................................... 136
Questions .................................................. 136
References ................................................. 136
11 Introduction to Monte Carlo Simulation ..................... 137
11.1 Monte Carlo Method .................................... 137
11.2 Sampling of Reaction Point ............................ 137
11.3 Condensed History Technique ........................... 141
11.4 Slowing Down of Electrons ............................. 146
11.5 Conversion of Angles .................................. 147
11.6 Intersection at Boundary .............................. 148
11.7 Summary ............................................... 150
Questions .................................................. 151
References ................................................. 151
Section II
12 Cross Sections for Interactions of Photons with Matter ..... 155
12.1 Coherent Scattering ................................... 155
12.2 Photoelectric Effect .................................. 157
12.3 Incoherent Scattering ................................. 158
12.4 Pair Creation ......................................... 162
12.5 Soft X-Rays ........................................... 166
12.6 Summary ............................................... 170
Questions .................................................. 170
References ................................................. 171
13 Cross Sections for Interactions of Electrons with Water .... 173
13.1 Ionization ............................................ 173
13.1.1 Secondary Electrons ............................ 173
13.1.2 Total Cross Sections ........................... 179
13.2 Excitation ............................................ 181
13.3 Elastic Scattering .................................... 184
13.4 Stopping Powers ....................................... 186
13.5 Summary ............................................... 187
Questions .................................................. 188
References ................................................. 188
14 Cross Sections for Interactions of Low-Energy Protons
(<1 MeVu-1) in Water ....................................... 191
14.1 Ionization ............................................ 191
14.1.1 Secondary Electrons ............................ 191
14.1.2 Total Cross Sections ........................... 195
14.2 Excitation ............................................ 197
14.3 Elastic Scattering .................................... 197
14.4 Charge Transfer ....................................... 201
14.5 Stopping Powers ....................................... 202
14.5.1 Electronic Stopping Powers ..................... 202
14.5.2 Nuclear Stopping Powers ........................ 209
14.6 Summary ............................................... 209
Questions .................................................. 210
References ................................................. 210
15 Cross Sections for Interactions of Low Energy α-Particles
(<2 MeVu-1) in Water ....................................... 213
15.1 Ionization ............................................ 213
15.1.1 Secondary Electrons ............................ 213
15.1.2 Total Cross Sections ........................... 214
15.1.1 Excitation ..................................... 217
15.3 Elastic Scattering .................................... 218
15.4 Charge Transfer ....................................... 219
15.5 Stopping Powers ....................................... 221
15.5.1 Electronic Stopping Powers ..................... 221
15.6 Summary ............................................... 225
Questions .................................................. 225
References ................................................. 226
16 Cross Sections for Interactions of High-Energy Protons
(>1 MeVu-1) in Water ....................................... 227
16.1 Ionization ............................................ 227
16.1.1 Secondary Electrons ............................ 227
16.1.2 Total Cross Sections ........................... 230
16.2 Excitation ............................................ 231
16.3 Elastic Scattering .................................... 231
16.4 Summary ............................................... 232
Questions .................................................. 233
References ................................................. 233
17 Model Calculations Using Track Structure Data of
Electrons .................................................. 235
17.1 Ranges and W Values ................................... 235
17.2 Depth-Dose Distributions .............................. 235
17.3 Electron Slowing Down Spectra ......................... 237
17.4 Summary ............................................... 241
References ................................................. 241
18 Model Calculations Using Track Structure Data of Ions ...... 243
18.1 KURBUC Code System for Heavy Particles ................ 243
18.2 Ranges and W Values ................................... 243
18.3 Depth-Dose Distributions .............................. 247
18.4 Radial Dose Distributions ............................. 249
18.5 Restricted Stopping Powers ............................ 249
18.6 Summary ............................................... 251
References ................................................. 251
Section III
19 Inelastic Scattering of Charged Particles in Condensed
Media: A Dielectric Theory Perspective ..................... 255
19.1 Introduction .......................................... 255
19.2 Formal Scattering Theory: The Problem ................. 258
19.3 Born Approximation .................................... 260
19.3.1 Validity Range ................................. 261
19.3.2 Dynamic Structure Factor ....................... 261
19.3.3 Oscillator Strength ............................ 263
19.3.4 Dielectric Response Function ................... 266
19.3.5 Kramers-Kronig Relations ....................... 270
19.3.6 Dielectric Formulation ......................... 270
19.4 Bethe Approximation ................................... 273
19.5 Electron Gas Theory ................................... 275
19.5.1 Plasmons ....................................... 277
19.5.2 Drude Model .................................... 280
19.5.3 Lindhard Model ................................. 284
19.5.4 Landau Damping ................................. 290
19.5.5 Mermin Model ................................... 292
19.5.6 Plasmon Pole Approximation ..................... 295
19.5.7 Many-Body Local Field Correction ............... 298
19.5.8 Static Approximation ........................... 301
19.6 Optical Data Models ................................... 305
19.6.1 Optical Limit .................................. 305
19.6.2 Models Based on the Drude Dielectric Function .. 311
19.6.2.1 OREC Version .......................... 311
19.6.2.2 Ritchie-Howie Version ................. 313
19.6.2.3 Extension to Arbitrary q .............. 315
19.6.3 Models Based on the Lindhard Dielectric
Function ....................................... 317
19.6.3.1 Penn Model ............................ 317
19.6.3.2 Ashley Model .......................... 321
19.6.4 Models Based on the Mermin Dielectric
Function ....................................... 322
19.6.5 Hybrid Models .................................. 323
19.6.5.1 Liljequist Model ...................... 323
19.6.5.2 Two-Mode Model ........................ 325
References ................................................. 327
Section IV
20 Questions and Problems ..................................... 333
Index ......................................................... 341
|
|