Dolgachev I.V. Classical algebraic geometry: a modern view (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDolgachev I.V. Classical algebraic geometry: a modern view. - Cambridge; New York: Cambridge University Press, 2012. - xii, 639 p.: ill. - Ref.: p.593-619 - Sub. ind.: p.620-639. - ISBN 978-1-107-01765-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi
1  Polarity ..................................................... 1
   1.1  Polar hypersurfaces ..................................... 1
   1.2  The dual hypersurface .................................. 28
   1.3  Polar s-hedra .......................................... 35
   1.4  Dual homogeneous forms ................................. 48
   1.5  First examples ......................................... 60
   Exercises ................................................... 64
   Historical notes ............................................ 66
2  Conies and quadric surfaces ................................. 69
   2.1  Self-polar triangles ................................... 69
   2.2  Poncelet relation ...................................... 81
   2.3  Quadric surfaces ....................................... 91
   Exercises .................................................. 108
   Historical notes ........................................... 111
3  Plane cubics ............................................... 114
   3.1  Equations ............................................. 114
   3.2  Polars of a plane cubic ............................... 124
   3.3  Projective generation of cubic curves ................. 133
   3.4  Invariant theory of plane cubics ...................... 136
   Exercises .................................................. 141
   Historical notes ........................................... 143
4  Determinantal equations .................................... 146
   4.1  Plane curves .......................................... 146
   4.2  Determinantal equations for hypersurfaces ............. 160
   Exercises .................................................. 184
   Historical notes ........................................... 186
5  Theta characteristics ...................................... 188
   5.1  Odd and even theta characteristics .................... 188
   5.2  Hyperelliptic curves .................................. 192
   5.3  Theta functions ....................................... 197
   5.4  Odd theta characteristics ............................. 204
   5.5  Scorza correspondence ................................. 212
   Exercises .................................................. 224
   Historical notes ........................................... 224
6  Plane quartics ............................................. 226
   6.1  Bitangents ............................................ 226
   6.2  Determinant equations of a plane quartic .............. 235
   6.3  Even theta characteristics ............................ 243
   6.4  Invariant theory of plane quartics .................... 265
   6.5  Automorphisms of plane quartic curves ................. 266
   Exercises .................................................. 276
   Historical notes ........................................... 278
7  Cremona transformations .................................... 280
   7.1  Homaloidal linear systems ............................. 280
   7.2  First examples ........................................ 294
   7.3  Planar Cremona transformations ........................ 303
   7.4  Elementary transformations ............................ 320
   7.5  Noether's Factorization Theorem ....................... 329
   Exercises .................................................. 342
   Historical notes ........................................... 344
8  del Pezzo surfaces ......................................... 347
   8.1  First properties ...................................... 347
   8.2  The Etf-lattice ....................................... 358
   8.3  Anticanonical models .................................. 379
   8.4  del Pezzo surfaces of degree ≥ 6 ...................... 386
   8.5  del Pezzo surfaces of degree 5 ........................ 389
   8.6  Quartic del Pezzo surfaces ............................ 396
   8.7  del Pezzo surfaces of degree 2 ........................ 405
   8.8  del Pezzo surfaces of degree 1 ........................ 411
   Exercises .................................................. 422
   Historical notes ........................................... 423
9  Cubic surfaces ............................................. 426
   9.1  Lines on a nonsingular cubic surface .................. 426
   9.2  Singularities ......................................... 443
   9.3  Determinantal equations ............................... 449
   9.4  Representations as sums of cubes ...................... 459
   9.5  Automorphisms of cubic surfaces ....................... 483
   Exercises .................................................. 502
Historical notes .............................................. 504


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:58 2019. Размер: 8,478 bytes.
Посещение N 1445 c 26.11.2013