Binh L.N. Wireless and guided wave electromagnetics: fundamentals and applications (Boca Raton, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBinh L.N. Wireless and guided wave electromagnetics: fundamentals and applications / Le Nguyen Binh. - Boca Raton: CRC Press, 2013. - xxi, 377 p.: ill. - (Optics and photonics; 7). - Incl. bibl. ref. - Ind.: p.379-384. - ISBN 978-1-4398-4753-4
 

Оглавление / Contents
 
Preface ........................................................ xv
Acknowledgments ............................................... xix
About the Author .............................................. xxi

Chapter 1  Electric and Magnetic Fields and Waves ............... 1
1.1  Brief Overview ............................................. 1
1.2  Wave Representation ........................................ 1
     1.2.1  Overview ............................................ 1
     1.2.2  General Property .................................... 2
     1.2.3  Waves by Phasor Representation ...................... 3
     1.2.4  Phase Velocity ...................................... 4
1.3  Maxwell's Equations ........................................ 5
     1.3.1  Faraday's Law ....................................... 5
     1.3.2  Ampere's Law ........................................ 5
     1.3.3  Gauss's Law for Electric Field and Charges .......... 7
     1.3.4  Gauss's Law for Magnetic Field ...................... 7
1.4  Maxwell Equations in Dielectric Media ...................... 7
     1.4.1  Maxwell Equations ................................... 7
     1.4.2  Wave Equation ....................................... 9
     1.4.3  Boundary Conditions ................................. 9
     1.4.4  Reciprocity Theorems ................................ 9
1.5  Current Continuity ........................................ 10
1.6  Lossless ТЕМ Waves ........................................ 11
1.7  Maxwell's Equations in Time-Harmonic and Phasor Forms ..... 14
1.8  Plane Waves ............................................... 14
     1.8.1  General Wave Equations ............................. 14
     1.8.2  Time-Harmonic Wave Equation ........................ 16
     Reference ................................................. 18

Chapter 2  Electrical Transmission Lines ....................... 19
2.1  Model of Time-Harmonic Waves on Transmission Lines ........ 19
     2.1.1  Distributed Model of Transmission Lines ............ 19
     2.1.2  Time-Harmonic Waves on Transmission Lines .......... 21
2.2  Terminated Transmission Lines ............................. 23
     2.2.1  Terminated Line .................................... 23
     2.2.2  Reflection Coefficient ............................. 24
     2.2.3  Input Line Impedance ............................... 25
2.3  Smith Chart ............................................... 27
     2.4  Impedance Matching ................................... 29
     2.5  Equipment ............................................ 32
          2.5.1  Apparatus ..................................... 32
          2.5.2  Experimental Setup ............................ 33
          2.5.3  Notes on the Slotted Lines .................... 33
          2.5.4  Experiment .................................... 33
          2.5.5  Time-Domain Reflectometry ..................... 35
     2.6  Concluding Remarks ................................... 37
     2.7  Problems ............................................. 38
          2.7.1  Problem on TDR Operation on Transmission
                 and Reflection ................................ 38
          2.7.2  Problem on Transmission Line .................. 39
          2.7.3  Problem on Slotted Transmission Line
                 Experiment .................................... 40
          2.7.4  Problems on Transmission Lines ................ 40
     Reference ................................................. 45

Chapter 3  Antennae ............................................ 47
3.1  Introduction .............................................. 47
     3.1.1  Differential Doublet and Dipole Antenna ............ 49
     3.1.2  Far Field .......................................... 50
     3.1.3  Near Field ......................................... 51
     3.1.4  Linear Antenna Current Distribution ................ 51
3.2  Radiating Fields .......................................... 54
     3.2.1  Radian Field of Hertzian Antenna ................... 56
     3.2.2  Standing Wave Antenna: The Half-Wave Dipole
            Antenna ............................................ 57
     3.2.3  Monopole Antenna ................................... 58
     3.2.4  Traveling Wave Antenna ............................. 60
     3.2.5  Omnidirectional Antenna ............................ 61
     3.2.6  Horn Waveguide Antenna ............................. 63
3.3  Antenna Figure of Merit ................................... 64
3.4  Experiment ................................................ 66
     3.4.1  Background ......................................... 66
     3.4.2  Measurement of the Monopole Antenna Admittance ..... 68
3.5  Concluding Remarks ........................................ 69
3.6  Appendix: Metallic Waveguide .............................. 69
     3.6.1  Brief Concept ...................................... 69
     3.6.2  Experiment on Waveguide ............................ 74
3.7  Problems .................................................. 76
     3.7.1  Waveguide Measurements ............................. 76
     3.7.2  Antenna Admittance ................................. 76
     3.7.3  Waveguide .......................................... 76
     References ................................................ 77

Chapter 4  Planar Optical Waveguides ........................... 79
4.1  Introduction .............................................. 79
4.2  Formation of Planar Single-Mode Waveguide Problems ........ 81
     4.2.1  TE/TM Wave Equation ................................ 82
4.3  Approximate Analytical Methods of Solution ................ 87
     4.3.1  Asymmetrical Waveguides ............................ 88
     4.3.2  Symmetrical Waveguides ............................. 99
     4.3.3  Concluding Remarks ................................ 121
4.4  Design and Simulations of Planar Optical Waveguides:
     Experiments .............................................. 122
     4.4.1  Introduction ...................................... 122
     4.4.2  Theoretical Background ............................ 122
     4.4.3  Simulation of Optical Fields and Propagation in
            Slab Optical Waveguide Structures ................. 126
4.5  Appendix A: Exact Analysis of Clad Linear Optical
     Waveguides ............................................... 129
     4.5.1  Asymmetrical Clad Linear Profile .................. 129
     4.5.2  Symmetrical Waveguide ............................. 132
4.6  Appendix B: WKB Method, Turning Points, and Connection
     Formulae ................................................. 133
     4.6.1  Introduction ...................................... 133
     4.6.2  Derivation of the WKB Approximate Solutions ....... 133
     4.6.3  Turning Point Corrections ......................... 136
     4.6.4  Correction Formulae ............................... 142
     4.6.5  Application of Correction Formulae ................ 144
4.7  Problems ................................................. 147
     4.7.1  Problem 1 ......................................... 147
     4.7.2  Problem 2 ......................................... 148
     4.7.3  Problem 3 ......................................... 148
     4.7.4  Problem 4 ......................................... 148
     References ............................................... 149

Chapter 5  Three-Dimensional Optical Waveguides ............... 153
5.1  Introduction ............................................. 153
5.2  Marcatilli's Method ...................................... 155
     5.2.1  Field and Modes Guided in Rectangular Optical
            Waveguides ........................................ 156
     5.2.2  Dispersion Characteristics ........................ 160
5.3  Effective Index Method ................................... 162
     5.3.1  General Considerations ............................ 162
     5.3.2  Pseudowaveguide ................................... 165
5.4  Finite Difference Numerical Techniques for 3D
     Waveguides ............................................... 166
     5.4.1  Nonuniform Grid Semivectorial Polarized Finite
            Difference Method for Optical Waveguides with
            Arbitrary Index Profile ........................... 167
     5.4.2  Ti:LiNb03-Diffused Channel Waveguide .............. 176
5.5  Mode Modeling of Rib Waveguides .......................... 187
     5.5.1  Choice of Grid Size ............................... 194
     5.5.2  Numerical Results ................................. 195
     5.5.3  Higher-Order Modes ................................ 196
5.6  Conclusions .............................................. 198
     References ............................................... 200

Chapter 6  Optical Fibers: Single- and Few-Mode Structures
and Guiding Properties ........................................ 203
6.1  Optical Fibers: Circular Optical Waveguides .............. 203
     6.1.1  General Aspects ................................... 203
     6.1.2  Optical Fiber: General Properties ................. 204
     6.1.3  Fundamental Mode of Weakly Guiding Fibers ......... 207
     6.1.4  Equivalent Step Index Description ................. 221
6.2  Special Fibers ........................................... 225
6.3  Nonlinear Optical Effects ................................ 227
     6.3.1  Nonlinear Self-Phase Modulation Effects ........... 228
     6.3.2  Self-Phase Modulation ............................. 228
     6.3.3  Cross-Phase Modulation ............................ 229
     6.3.4  Stimulated Scattering Effects ..................... 230
6.4  Optical Fiber Manufacturing and Cabling .................. 234
6.5  Concluding Remarks ....................................... 238
6.6  Problems ................................................. 239
     6.6.1  Problem 1 ......................................... 239
     6.6.2  Problem 2 ......................................... 239
     6.6.3  Problem 3 ......................................... 240
     6.6.4  Problem 4 ......................................... 240
     6.6.5  Problem 5 ......................................... 240
     6.6.6  Problem 6 ......................................... 240
     6.6.7  Problem 7 ......................................... 241
     6.6.8  Problem 8 ......................................... 241
     6.6.9  Problem 9 ......................................... 241
     6.6.10 Problem 10 ........................................ 242
     Appendix 6.1: Technical Specification of Corning
     Single-Mode Optical Fibers ............................... 243
     References ............................................... 248

Chapter 7  Optical Fiber Operational Parameters ............... 249
7.1  Introductory Remarks ..................................... 249
7.2  Signal Attenuation in Optical Fibers ..................... 250
     7.2.1  Intrinsic or Material Attenuation ................. 250
     7.2.2  Absorption ........................................ 250
     7.2.3  Rayleigh Scattering ............................... 251
     7.2.4  Waveguide Loss .................................... 251
     7.2.5  Bending Loss ...................................... 251
     7.2.6  Microbending Loss ................................. 252
     7.2.7  Joint or Splice Loss .............................. 252
     7.2.8  Attenuation Coefficient ........................... 253
7.3  Signal Distortion in Optical Fibers ...................... 253
     7.3.1  Basics on Group Velocity .......................... 253
     7.3.2  Group Velocity Dispersion ......................... 256
     7.3.3  Transmission Bit Rate and the Dispersion Factor ... 266
     7.3.4  Effects of Mode Hopping ........................... 267
7.4  Advanced Optical Fibers: Dispersion-Shifted,
     -Flattened, and -Compensated Optical Fibers .............. 268
7.5  Propagation of Optical Signals in Optical Fiber
     Transmission Line: Split-Step Fourier Method ............. 268
     7.5.1  Symmetrical Split-Step Fourier Method (SSFM) ...... 269
     7.5.2  MATLAB® Program and MATLAB Simulink® Models of
            the SSFM .......................................... 270
     7.5.3  Remarks ........................................... 277
     Appendix 7.1: Program Listings for Design of Standard
            Single-Mode Fiber ................................. 278
     Appendix 7.2: Program Listings of the Design of Non-
            Zero-Dispersion-Shifted Fiber ..................... 280
7.6  Problems ................................................. 281
     7.6.1  Problem 1 ......................................... 283
     7.6.2  Problem 2 ......................................... 283
     7.6.3  Problem 3 ......................................... 283
     7.6.4  Problem 4 ......................................... 283
     7.6.5  Problem 5 ......................................... 284
     7.6.6  Problem 6 ......................................... 284
     7.6.7  Problem 7 ......................................... 284
     7.6.8  Problem 8 ......................................... 285
     7.6.9  Problem 9 ......................................... 285
     7.6.10 Problem 10 ........................................ 285
     7.6.11 Problem 11 ........................................ 285
     7.6.12 Problem 12 ........................................ 286
     7.6.13 Problem 13 Fiber Design Mini-Project .............. 286
     References ............................................... 291

Chapter 8  Guided Wave Optical Transmission Lines: Transfer
Functions ..................................................... 293
8.1  Transfer Function of Single-Mode Fibers .................. 293
     8.1.1  Linear Transfer Function .......................... 293
     8.1.2  Single-Mode Optical Fiber Transfer Function:
            Simplified Linear and Nonlinear Operating
            Regions ........................................... 298
     8.1.3  Nonlinear Fiber Transfer Function ................. 306
8.2  Fiber Nonlinearity ....................................... 309
     8.2.1  SPM and XPM Effects ............................... 309
     8.2.2  Modulation Instability ............................ 310
     8.2.3  Effects of Mode Hopping ........................... 311
8.3  Nonlinear Fiber Transfer Functions and Application in
     Compensations ............................................ 311
     8.3.1  Cascades of Linear and Nonlinear Transfer
            Functions in Time and Frequency Domains ........... 313
     8.3.2  Volterra Nonli near Transfer Function and
            Electronic Compensation ........................... 315
     8.3.3  SPM and Intrachannel Nonlinear Effects ............ 316
8.4  Concluding Remarks ....................................... 322
     Appendix 8.1: Program Listings of Split-Step Fourier
            Method (SSFM) with Nonlinear SPM Effect and
            Raman Gain Distribution ........................... 322
     Appendix 8.2: Program Listings of an Initialization
            File .............................................. 325
     References ............................................... 328

Chapter 9  Fourier Guided Wave Optics ......................... 331
     Abbreviations ............................................ 331
9.1  Introduction ............................................. 331
9.2  Background: Fourier Transformation ....................... 333
     9.2.1  Basic Transform ................................... 333
     9.2.2  Optical Circuitry Implementation .................. 334
     9.2.3  Optical DFT by Mach-Zehnder Delay
            Interferometers (MZDIs) ........................... 339
     9.2.4  Fourier Transform Signal Flow and Optical
            Implementation .................................... 340
     9.2.5  AWG Structure and Characteristics ................. 345
9.3  Guided Wave Wavelet Transformer .......................... 349
     9.3.1  Wavelet Transformation and Wavelet Packets ........ 349
     9.3.2  Fiber Optic Synthesis ............................. 352
     9.3.3  Synthesis Using Multimode Interference Structure .. 355
     9.3.4  Remarks ........................................... 357
9.4  Optical Orthogonal Frequency Division Multiplexing ....... 359
9.5  Nyquist Orthogonal Channels for Tbps Optical
     Transmission Systems ..................................... 360
9.6  Design of Optical Waveguides for Optical FFT and lFFT .... 363
9 7  Concluding Remarks ....................................... 366
     Appendix 9.1 ............................................. 368
     References ............................................... 369
Appendix: Vector Analysis ..................................... 371
Index ......................................................... 379


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:58 2019. Размер: 20,890 bytes.
Посещение N 1433 c 26.11.2013