Gautschi W. Numerical analysis (New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGautschi W. Numerical analysis. - 2nd ed. - New York: Springer / Birkhäuser, 2012. - xxvi, 588 p.: ill. - Ref.: p.543-569. - Ind.: p.571-588. - ISBN 978-0-8176-8258-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Prologue ...................................................... xix
PI   Overview ................................................. xix
P2   Numerical Analysis Software .............................. xxi
P3   Textbooks and Monographs ................................. xxi
     P3.1  Selected Textbooks on Numerical Analysis ........... xxi
     P3.2  Monographs and Books on Specialized Topics ....... xxiii
P4   Journals ................................................ xxvi
1  Machine Arithmetic and Related Matters ....................... 1
   1.1  Real Numbers, Machine Numbers, and Rounding ............. 2
        1.1.1  Real Numbers ..................................... 2
        1.1.2  Machine Numbers .................................. 3
        1.1.3  Rounding ......................................... 5
   1.2  Machine Arithmetic ...................................... 7
        1.2.1  A Model of Machine Arithmetic .................... 7
        1.2.2  Error Propagation in Arithmetic Operations:
               Cancellation Error ............................... 8
   1.3  The Condition of a Problem ............................. 11
        1.3.1  Condition Numbers ............................... 13
        1.3.2  Examples ........................................ 16
   1.4  The Condition of an Algorithm .......................... 24
   1.5  Computer Solution of a Problem; Overall Error .......... 27
   1.6  Notes to Chapter 1 ..................................... 28
   Exercises and Machine Assignments to Chapter 1 .............. 31
   Exercises ................................................... 31
   Machine Assignments ......................................... 39
   Selected Solutions to Exercises ............................. 44
   Selected Solutions to Machine Assignments ................... 48
2  Approximation and Interpolation ............................. 55
   2.1  Least Squares Approximation ............................ 59
        2.1.1  Inner Products .................................. 59
        2.1.2  The Normal Equations ............................ 61
        2.1.1  Least Squares Error; Convergence ................ 64
        2.1.4  Examples of Orthogonal Systems .................. 67
   2.2  Polynomial Interpolation ............................... 73
        2.2.1  Lagrange Interpolation Formula: Interpolation
               Operator ........................................ 74
        2.2.2  Interpolation Error ............................. 77
        2.2.3  Convergence ..................................... 81
        2.2.4  Chebyshev Polynomials and Nodes ................. 86
        2.2.5  Barycentric Formula ............................. 91
        2.2.6  Newton's Formula ................................ 93
        2.2.7  Hermite Interpolation ........................... 97
        2.2.8  Inverse Interpolation .......................... 100
   2.3  Approximation and Interpolation by Spline Functions ... 101
        2.3.1  Interpolation by Piecewise Linear Functions .... 102
        2.3.2  A Basis for S10(Δ) ............................. 104
        2.3.3  Least Squares Approximation .................... 106
        2.3.4  Interpolation by Cubic Splines ................. 107
        2.3.5  Minimality Properties of Cubic Spline
               Interpolants ................................... 110
   2.4  Notes to Chapter 2 .................................... 112
   Exercises and Machine Assignments to Chapter 2 ............. 118
   Exercises .................................................. 118
   Machine Assignments ........................................ 134
   Selected Solutions to Exercises ............................ 138
   Selected Solutions to Machine Assignments .................. 150
3  Numerical Differentiation and Integration .................. 159
   3.1  Numerical Differentiation ............................. 159
        3.1.1  A General Differentiation Formula for
               Unequally Spaced Points ........................ 159
        3.1.2  Examples ....................................... 161
        3.1.3  Numerical Differentiation with Perturbed Data .. 163
   3.2  Numerical Integration ................................. 165
        3.2.1  The Composite Trapezoidal and Simpson's Rules .. 165
        3.2.2  (Weighted) Newton-Cotes and Gauss Formulae ..... 169
        3.2.3  Properties of Gaussian Quadrature Rules ........ 175
        3.2.4  Some Applications of the Gauss Quadrature
               Rule ........................................... 178
        3.2.5  Approximation of Linear Functionals: Method
               of Interpolation vs. Method of Undetermined
               Coefficients ................................... 182
        3.2.6  Peano Representation of Linear Functionals ..... 187
        3.2.7  Extrapolation Methods .......................... 190
   3.3  Notes to Chapter 3 .................................... 195
   Exercises and Machine Assignments to Chapter 3 ............. 200
   Exercises .................................................. 200
   Machine Assignments ........................................ 214
   Selected Solutions to Exercises ............................ 219
   Selected Solutions to Machine Assignments .................. 232
4  Nonlinear Equations ........................................ 253
   4.l  Examples .............................................. 254
        4.1.1  A Transcendental Equation ...................... 254
        4.1.2  A Two-Point Boundary Value Problem ............. 254
        4.1.3  A Nonlinear Integral Equation .................. 256
        4.1.4  s-Orthogonal Polynomials ....................... 257
   4.2  Iteration, Convergence, and Efficiency ................ 258
   4.3  The Methods of Bisection and Sturm Sequences .......... 261
        4.3.1  Bisection Method ............................... 261
        4.3.2  Method of Sturm Sequences ...................... 264
   4.4  Method of False Position .............................. 266
   4.5  Secant Method ......................................... 269
   4.6  Newton's Method ....................................... 274
   4.7  Fixed Point Iteration ................................. 278
   4.8  Algebraic Equations ................................... 280
        4.8.1  Newton's Method Applied to an Algebraic
               Equation ....................................... 280
        4.8.2  An Accelerated Newton Method for Equations
               with Real Roots ................................ 282
   4.9  Systems of Nonlinear Equations ........................ 284
        4.9.1  Contraction Mapping Principle .................. 284
        4.9.2  Newton's Method for Systems of Equations ....... 285
   4.10 Notes to Chapter 4 .................................... 287
   Exercises and Machine Assignments to Chapter 4 ............. 292
   Exercises .................................................. 292
   Machine Assignments ........................................ 302
   Selected Solutions to Exercises ............................ 306
   Selected Solutions to Machine Assignments .................. 318
5  Initial Value Problems for ODEs: One-Step Methods .......... 325
   5.1  Examples .............................................. 326
   5.2  Types of Differential Equations ....................... 328
   5.3  Existence and Uniqueness .............................. 331
   5.4  Numerical Methods ..................................... 332
   5.5  Local Description of One-Step Methods ................. 333
   5.6  Examples of One-Step Methods .......................... 335
        5.6.1  Euler's Method ................................. 335
        5.6.2  Method of Taylor Expansion ..................... 336
        5.6.3  Improved Euler Methods ......................... 337
        5.6.4  Second-Order Two-Stage Methods ................. 339
        5.6.5  Runge-Kutta Methods ............................ 341
   5.7  Global Description of One-Step Methods ................ 343
        5.7.1  Stability ...................................... 344
        5.7.2  Convergence .................................... 347
        5.7.3  Asymptotics of Global Error .................... 348
   5.8  Error Monitoring and Step Control ..................... 352
        5.8.1  Estimation of Global Error ..................... 352
        5.8.2  Truncation Error Estimates ..................... 354
        5.8.3  Step Control ................................... 357
   5.9  Stiff Problems ........................................ 360
        5.9.1  A-Stability .................................... 361
        5.9.2  Pade Approximation ............................. 362
        5.9.3  Examples of A-Stable One-Step Methods .......... 367
        5.9.4  Regions of Absolute Stability .................. 370
   5.10 Notes to Chapter 5 .................................... 371
   Exercises and Machine Assignments to Chapter 5 ............. 378
   Exercises .................................................. 378
   Machine Assignments ........................................ 383
   Selected Solutions to Exercises ............................ 387
   Selected Solutions to Machine Assignments .................. 392
6  Initial Value Problems for ODEs: Multistep Methods ......... 399
   6.1  Local Description of Multistep Methods ................ 399
        6.1.1  Explicit and Implicit Methods .................. 399
        6.1.2  Local Accuracy ................................. 401
        6.1.3  Polynomial Degree vs. Order .................... 405
   6.2  Examples of Multistep Methods ......................... 408
        6.2.1  Adams-Bashforth Method ......................... 409
        6.2.2  Adams-Moulton Method ........................... 412
        6.2.3  Predictor-Corrector Methods .................... 413
   6.3  Global Description of Multistep Methods ............... 416
        6.3.1  Linear Difference Equations .................... 416
        6.3.2  Stability and Root Condition ................... 420
        6.3.3  Convergence .................................... 424
        6.3.4  Asymptotics of Global Error .................... 426
        6.3.5  Estimation of Global Error ..................... 430
   6.4  Analytic Theory of Order and Stability ................ 433
        6.4.1  Analytic Characterization of Order ............. 433
        6.4.2  Stable Methods of Maximum Order ................ 441
        6.4.3  Applications ................................... 446
   6.5  Stiff Problems ........................................ 450
        6.5.1  A-Stability .................................... 450
        6.5.2  A(α)-Stability ................................. 452
   6.6  Notes to Chapter 6 .................................... 453
   Exercises and Machine Assignments to Chapter 6 ............. 456
   Exercises .................................................. 456
   Machine Assignments ........................................ 459
   Selected Solutions to Exercises ............................ 461
7  Two-Point Boundary Value Problems for ODEs ................. 471
   7.1  Existence and Uniqueness .............................. 474
        7.1.1  Examples ....................................... 474
        7.1.2  A Scalar Boundary Value Problem ................ 476
        7.1.3  General Linear and Nonlinear Systems ........... 481
   7.2  Initial Value Techniques .............................. 482
        7.2.1  Shooting Method for a Scalar Boundary Value
               Problem ........................................ 483
        7.2.2  Linear and Nonlinear Systems ................... 485
        7.2.3  Parallel Shooting .............................. 490
   7.3  Finite Difference Methods ............................. 494
        7.3.1  Linear Second-Order Equations .................. 494
        7.3.2  Nonlinear Second-Order Equations ............... 500
   7.4  Variational Methods ................................... 503
        7.4.1  Variational Formulation ........................ 503
        7.4.2  The Extremal Problem ........................... 506
        7.4.3  Approximate Solution of the Extremal Problem ... 507
   7.5  Notes to Chapter 7 .................................... 509
   Exercises and Machine Assignments to Chapter 7 ............. 512
   Exercises .................................................. 512
   Machine Assignments ........................................ 518
   Selected Solutions to Exercises ............................ 521
   Selected Solutions to Machine Assignments .................. 532
References .................................................... 543
Index ......................................................... 571


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:54 2019. Размер: 16,601 bytes.
Посещение N 1378 c 19.11.2013