Bruus H. Many-body quantum theory in condensed matter physics: an introduction (Oxford, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBruus H. Many-body quantum theory in condensed matter physics: an introduction / H.Bruus, K.Flensberg. - Oxford; New York: Oxford University Press, 2004. - xix, 435 p.: ill. - (Oxford graduate texts). - Bibliogr.: p.421-423. - Ind.: p.424-435. - ISBN 978-0-19-856633-5
 

Оглавление / Contents
 
List of symbols ............................................... xiv
1  First and second quantization ................................ 1
   1.1  First quantization, single-particle systems ............. 2
   1.2  First quantization, many-particle systems ............... 4
        1.2.1  Permutation symmetry and indistinguishability .... 5
        1.2.2  The single-particle states as basis states ....... 6
        1.2.3  Operators in first quantization .................. 8
   1.3  Second quantization, basic concepts .................... 10
        1.3.1  The occupation number representation ............ 10
        1.3.2  The boson creation and annihilation operators ... 10
        1.3.3  The fermion creation and annihilation
               operators ....................................... 13
        1.3.4  The general form for second quantization
               operators ....................................... 14
        1.3.5  Change of basis in second quantization .......... 16
        1.3.6  Quantum field operators and their Fourier
               transforms ...................................... 17
   1.4  Second quantization, specific operators ................ 18
        1.4.1  The harmonic oscillator in second quantization .. 18
        1.4.2  The electromagnetic field in second
               quantization .................................... 19
        1.4.3  Operators for kinetic energy, spin, density
               and current ..................................... 21
        1.4.4  The Coulomb interaction in second quantization .. 23
        1.4.5  Basis states for systems with different kinds
               of particles .................................... 25
   1.5  Second quantization and statistical mechanics .......... 26
        1.5.1  Distribution function for non-interacting
               fermions ........................................ 29
        1.5.2  Distribution function for non-interacting
               bosons .......................................... 29
   1.6  Summary and outlook .................................... 30
2  The electron gas ............................................ 32
   2.1  The non-interacting electron gas ....................... 33
        2.1.1  Bloch theory of electrons in a static ion
               lattice ......................................... 33
        2.1.2  Non-interacting electrons in the jellium model .. 36
        2.1.3  Non-interacting electrons at finite
               temperature ..................................... 39
   2.2  Electron interactions in perturbation theory ........... 40
        2.2.1  Electron interactions in first-order
               perturbation theory ............................. 42
        2.2.2  Electron interactions in second-order
               perturbation theory ............................. 44
   2.3  Electron gases in 3, 2, 1 and 0 dimensions ............. 45
        2.3.1  3D electron gases: metals and semiconductors .... 45
        2.3.2  2D electron gases: GaAs/GaAlAs
               heterostructures ................................ 47
        2.3.3  ID electron gases: carbon nanotubes ............. 49
        2.3.4  OD electron gases: quantum dots ................. 50
   2.4  Summary and outlook .................................... 51
3  Phonons; coupling to electrons .............................. 52
   3.1  Jellium oscillations and Einstein phonons .............. 52
   3.2  Electron-phonon interaction and the sound velocity ..... 53
   3.3  Lattice vibrations and phonons in 1D ................... 54
   3.4  Acoustical and optical phonons in 3D ................... 57
   3.5  The specific heat of solids in the Debye model ......... 59
   3.6  Electron-phonon interaction in the lattice model ....... 61
   3.7  Electron-phonon interaction in the jellium model ....... 64
   3.8  Summary and outlook .................................... 65
4  Mean-field theory ........................................... 66
   4.1  Basic concepts of mean-field theory .................... 66
   4.2  The art of mean-field theory ........................... 69
   4.3  Hartree-Fock approximation ............................. 70
        4.3.1  Hartree-Fock approximation for the homogenous
               electron gas .................................... 71
   4.4  Broken symmetry ........................................ 72
   4.5  Ferromagnetism ......................................... 74
        4.5.1  The Heisenberg model of ionic ferromagnets ...... 74
        4.5.2  The Stoner model of metallic ferromagnets ....... 76
   4.6  Summary and outlook .................................... 78
5  Time dependence in quantum theory ........................... 80
   5.1  The Schrodinger picture ................................ 80
   5.2  The Heisenberg picture ................................. 81
   5.3  The interaction picture ................................ 81
   5.4  Time-evolution in linear response ...................... 84
   5.5  Time-dependent creation and annihilation operators ..... 84
   5.6  Fermi's golden rule .................................... 86
   5.7  The T-matrix and the generalized Fermi's golden  rule .. 87
   5.8  Fourier transforms of advanced and retarded functions .. 88
   5.9  Summary and outlook .................................... 90
6  Linear response theory ...................................... 92
   6.1  The general Kubo formula ............................... 92
        6.1.1   Kubo formula in the frequency domain ........... 94
   6.2  Kubo formula for conductivity .......................... 95
   6.3  Kubo formula for conductance ........................... 97
   6.4  Kubo formula for the dielectric function ............... 99
        6.4.1  Dielectric function for translation-invariant
               system ......................................... 100
        6.4.2  Relation between dielectric function and
               conductivity ................................... 101
   6.5  Summary and outlook ................................... 101
7  Transport in mesoscopic systems ............................ 103
   7.1  The S-matrix and scattering states .................... 104
        7.1.1  Definition of the S-matrix ..................... 104
        7.1.2  Definition of the scattering states ............ 107
        7.1.3  Unitarity of the S-matrix ...................... 107
        7.1.4  Time-reversal symmetry ......................... 108
   7.2  Conductance and transmission coefficients ............. 109
        7.2.1  The Landauer formula, heuristic derivation ..... 110
        7.2.2  The Landauer formula, linear response
               derivation ..................................... 112
        7.2.3  The Landauer-Biittiker formalism for
               multiprobe systems ............................. 113
   7.3  Electron wave guides .................................. 114
        7.3.1  Quantum point contact and conductance
               quantization ................................... 114
        7.3.2  The Aharonov-Bohm effect ....................... 118
   7.4  Summary and outlook ................................... 119
8  Green's functions .......................................... 121
   8.1  "Classical" Green's functions ......................... 121
   8.2  Green's function for the one-particle Schrodinger
        equation .............................................. 121
        8.2.1  Example: from the S-matrix to the Green's
               function ....................................... 124
   8.3  Single-particle Green's functions of many-body
        systems ............................................... 125
        8.3.1  Green's function of translation-invariant
               systems ........................................ 126
        8.3.2  Green's function of free electrons ............. 126
        8.3.3  The Lehmann representation ..................... 128
        8.3.4  The spectral function .......................... 130
        8.3.5  Broadening of the spectral function ............ 131
   8.4  Measuring the single-particle spectral function ....... 132
        8.4.1  Tunneling spectroscopy ......................... 133
   8.5  Two-particle correlation functions of many-body
        systems ............................................... 136
   8.6  Summary and outlook ................................... 139
9  Equation of motion theory .................................. 140
   9.1  The single-particle Green's function .................. 140
        9.1.1   Non-interacting particles ..................... 142
   9.2  Single level coupled to continuum ..................... 142
   9.3  Anderson's model for magnetic impurities .............. 143
        9.3.1  The equation of motion for the Anderson model .. 145
        9.3.2  Mean-field approximation for the Anderson
               model .......................................... 146
   9.4  The two-particle correlation function ................. 149
        9.4.1   The random phase approximation ................ 149
   9.5  Summary and outlook ................................... 151
10 Transport in interacting mesoscopic systems ................ 152
   10.1 Model Hamiltonians .................................... 152
   10.2 Sequential tunneling: the Coulomb blockade regime ..... 154
        10.2.1 Coulomb blockade for a metallic dot ............ 155
        10.2.2 Coulomb blockade for a quantum dot ............. 158
   10.3 Coherent many-body transport phenomena ................ 159
        10.3.1 Cotunneling .................................... 159
        10.3.2 Inelastic cotunneling for a metallic dot ....... 160
        10.3.3 Elastic cotunneling for a quantum dot .......... 161
   10.4 The conductance for Anderson-type models .............. 162
        10.4.1 The conductance in linear response ............. 163
        10.4.2 Calculation of Coulomb blockade peaks .......... 166
   10.5 The Kondo effect in quantum dots ...................... 169
        10.5.1 From the Anderson model to the Kondo model ..... 169
        10.5.2 Comparing the Kondo effect in metals and
               quantum dots HS(2) ..............................173
        10.5.3 Kondo-model conductance to second order in
               HS(2) .......................................... 174
        10.5.4 Kondo-model conductance to third order in Hys .. 175
        10.5.5 Origin of the logarithmic divergence ........... 180
        10.5.6 The Kondo problem beyond perturbation theory ... 181
   10.6 Summary and outlook ................................... 182
11 Imaginary-time Green's functions ........................... 184
   11.1 Definitions of Matsubara Green's functions ............ 187
        11.1.1 Fourier transform of Matsubara Green's
               functions ...................................... 188
   11.2 Connection between Matsubara and retarded functions ... 189
        11.2.1 Advanced functions ............................. 191
   11.3 Single-particle Matsubara Green's function ............ 192
        11.3.1 Matsubara Green's function for non-
               interacting particles .......................... 192
   11.4 Evaluation of Matsubara sums .......................... 193
        11.4.1 Summations over functions with simple poles .... 194
        11.4.2 Summations over functions with known branch
               cuts ........................................... 196
   11.5 Equation of motion .................................... 197
   11.6 Wick's theorem ........................................ 198
   11.7 Example: polarizability of free electrons ............. 201
   11.8 Summary and outlook ................................... 202
12 Feynman diagrams and external potentials ................... 204
   12.1 Non-interacting particles in external potentials ...... 204
   12.2 Elastic scattering and Matsubara frequencies .......... 206
   12.3 Random impurities in disordered metals ................ 208
   12.3.1 Feynman diagrams for the impurity scattering ........ 209
   12.4 Impurity self-average ................................. 211
   12.5 Self-energy for impurity scattered electrons .......... 216
        12.5.1 Lowest-order approximation ..................... 217
        12.5.2 First-order Born approximation ................. 217
        12.5.3 The full Born approximation .................... 220
        12.5.4 The self-consistent Born approximation and
               beyond ......................................... 222
   12.6 Summary and outlook ................................... 224
13 Feynman diagrams and pair interactions ..................... 226
   13.1 The perturbation series for fig.1 ......................... 227
   13.2 The Feynman rules for pair interactions ............... 228
        13.2.1 Feynman rules for the denominator of fig.1(b,a) .... 229
        13.2.2 Feynman rules for the numerator of fig.1(b,a) ...... 230
        13.2.3 The cancellation of disconnected Feynman
               diagrams ....................................... 231
   13.3 Self-energy and Dyson's equation ...................... 233
   13.4 The Feynman rules in Fourier space .................... 233
   13.5 Examples of how to evaluate Feynman diagrams .......... 236
        13.5.1 The Hartree self-energy diagram ................ 236
        13.5.2 The Fock self-energy diagram ................... 237
        13.5.3 The pair-bubble self-energy diagram ............ 238
   13.6 Cancellation of disconnected diagrams, general case ... 239
   13.7 Feynman diagrams for the Kondo model .................. 241
        13.7.1 Kondo model self-energy, second order in J ..... 243
        13.7.2 Kondo model self-energy, third order in J ...... 244
   13.8 Summary and outlook ................................... 245
14 The interacting electron gas ............................... 246
   14.1 The self-energy in the random phase approximation ..... 246
        14.1.1 The density dependence of self-energy
               diagrams ....................................... 247
        14.1.2 The divergence number of self-energy diagrams .. 248
        14.1.3 RPA resummation of the self-energy ............. 248
   14.2 The renormalized Coulomb interaction in RPA ........... 250
        14.2.1 Calculation of the pair-bubble ................. 251
        14.2.2 The electron-hole pair interpretation of RPA ... 253
   14.3 The groundstate energy of the electron gas ............ 253
   14.4 The dielectric function and screening ................. 256
   14.5 Plasma oscillations and Landau damping ................ 260
        14.5.1 Plasma oscillations and plasmons ............... 262
        14.5.2 Landau damping ................................. 263
   14.6 Summary and outlook ................................... 264
15 Fermi liquid theory ........................................ 266
   15.1 Adiabatic continuity .................................. 266
        15.1.1 Example: one-dimensional well .................. 267
        15.1.2 The quasiparticle concept and conserved
               quantities ..................................... 268
   15.2 Semi-classical treatment of screening and plasmons .... 269
        15.2.1 Static screening ............................... 270
        15.2.2 Dynamical screening ............................ 271
   15.3 Semi-classical transport equation ..................... 272
        15.3.1 Finite lifetime of the quasiparticles .......... 276
   15.4 Microscopic basis of the Fermi liquid theory .......... 278
        15.4.1 Renormalization of the single particle
               Green's function ............................... 278
        15.4.2 Imaginary part of the single-particle Green's
               function ....................................... 280
        15.4.3 Mass renormalization? .......................... 283
   15.5 Summary and outlook ................................... 283
16 Impurity scattering and conductivity ....................... 285
   16.1 Vertex corrections and dressed Green's functions ...... 286
   16.2 The conductivity in terms of a general vertex
        function .............................................. 291
   16.3 The conductivity in the first Born approximation ...... 293
   16.4 Conductivity from Born scattering with interactions ... 296
   16.5 The weak localization correction to the conductivity .. 298
   16.6 Disordered mesoscopic systems ......................... 308
        16.6.1 Statistics of quantum conductance, random
               matrix theory .................................. 308
        16.6.2 Weak localization in mesoscopic systems ........ 309
        16.6.3 Universal conductance fluctuations ............. 310
   16.7 Summary and outlook ................................... 312
17 Green's functions and phonons .............................. 313
   17.1 The Green's function for free phonons ................. 313
   17.2 Electron-phonon interaction and Feynman diagrams ...... 314
   17.3 Combining Coulomb and electron-phonon interactions .... 316
        17.3.1 Migdal's theorem ............................... 317
        17.3.2 Jellium phonons and the effective electron-
               electron interaction ........................... 318
   17.4 Phonon renormalization by electron screening in RPA ... 319
   17.5 The Cooper instability and Feynman diagrams ........... 322
   17.6 Summary and outlook ................................... 324
18 Superconductivity .......................................... 325
   18.1 The Cooper instability ................................ 325
   18.2 The BCS groundstate ................................... 327
   18.3 Microscopic BCS theory ................................ 329
   18.4 BCS theory with Matsubara Green's functions ........... 331
        18.4.1 Self-consistent determination of the BCS
               order parameter Δк ............................. 332
        18.4.2 Determination of the critical temperature Tc ... 333
        18.4.3 Determination of the BCS quasiparticle
               density of states .............................. 334
   18.5 The Nambu formalism of the BCS theory ................. 335
        18.5.1 Spinors and Green's functions in the Nambu
               formalism ...................................... 335
        18.5.2 The Meissner effect and the London equation .... 336
        18.5.3 The vanishing paramagnetic current response
               in BCS theory .................................. 337
   18.6 Gauge symmetry breaking and zero resistivity .......... 341
        18.6.1 Gauge transformations .......................... 341
        18.6.2 Broken gauge symmetry and dissipationless
               current ........................................ 342
   18.7 The Josephson effect .................................. 343
   18.8 Summary and outlook ................................... 345
19 ID electron gases and Luttinger liquids .................... 347
   19.1 What is a Luttinger liquid? ........................... 347
   19.2 Experimental realizations of Luttinger liquid
        physics ............................................... 348
        19.2.1 Example: Carbon Nanotubes ...................... 348
        19.2.2 Example: semiconductor wires ................... 348
        19.2.3 Example: quasi 1D materials .................... 348
        19.2.4 Example: Edge states in the fractional
               quantum Hall effect ............................ 348
   19.3 A first look at the theory of interacting electrons
        in 1D ................................................. 348
        19.3.1 The "quasiparticles" in 1D ..................... 350
        19.3.2 The lifetime of the "quasiparticles" in 1D ..... 351
   19.4 The spinless Luttinger-Tomonaga model ................. 352
        19.4.1 The Luttinger-Tomonaga model Hamiltonian ....... 352
        19.4.2 Inter-branch interaction ....................... 354
        19.4.3 Intra-branch interaction and charge
               conservation ................................... 355
        19.4.4 Umklapp processes in the half-filled band
               case ........................................... 356
   19.5 Bosonization of the Tomonaga model Hamiltonian ........ 357
        19.5.1 Derivation of the bosonized Hamiltonian ........ 357
        19.5.2 Diagonalization of the bosonized Hamiltonian ... 360
        19.5.3 Real space representation ...................... 360
   19.6 Electron operators in bosonized form .................. 363
   19.7 Green's functions ..................................... 368
   19.8 Measuring local density of states by tunneling ........ 369
   19.9 Luttinger liquid with spin ............................ 373
   19.10 Summary and outlook .................................. 374
A  Fourier transformations .................................... 376
   A.l Continuous functions in a finite region ................ 376
   A.2 Continuous functions in an infinite region ............. 377
   A.3 Time and frequency Fourier transforms .................. 377
   A.4 Some useful rules ...................................... 377
   A.5 Translation-invariant systems .......................... 378
Exercises ..................................................... 380
Bibliography .................................................. 421
Index ......................................................... 424


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:54 2019. Размер: 25,713 bytes.
Посещение N 1509 c 19.11.2013