Nemat-Nasser S. Plasticity: a treatise on finite deformation of heterogeneous inelastic materials (Cambridge; New York, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNemat-Nasser S. Plasticity: a treatise on finite deformation of heterogeneous inelastic materials. - Cambridge; New York: Cambridge Univ. Press, 2004. - xxv, 730 p.: ill. - (Cambridge monographs on mechanics). - ISBN 978-0-521-10806-5
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
PREFACE ..................................................... xxiii
PRÉCIS .......................................................... 1

1    GEOMETRY ................................................... 9
1.1  NOTATION .................................................. 11
     1.1.1  Contraction ........................................ 12
     1.1.2  Scalar and Dyadic Products of Complex-valued
            Vectors ............................................ 12
1.2  SPECTRAL REPRESENTATION OF SECOND-ORDER TENSORS ........... 14
     1.2.1  Coordinate Transformation .......................... 14
     1.2.2  Eigenvalues and Eigenvectors ....................... 15
     1.2.3  Symmetric Tensors .................................. 15
     1.2.4  Nonsymmetric Tensors ............................... 16
     1.2.5  Complex-valued Eigenvectors ........................ 18
1.3  REPRESENTATION OF TENSORS IN OBLIQUE COORDINATE TRIADS .... 18
     1.3.1  Reciprocal Base Vectors ............................ 19
     1.3.2  Real Eigenvalues and Eigenvectors .................. 20
     1.3.3  Spectral Representation of Am ...................... 22
     1.3.4  Distinct Real Eigenvalues .......................... 23
     1.3.5  Two Repeated Real Eigenvalues ...................... 23
     1.3.6  Three Repeated Real Eigenvalues .................... 24
     1.3.7  Complex-valued Eigenvalues and Eigenvectors ........ 25
1.4  IDENTITIES FOR SECOND-ORDER TENSORS ....................... 27
     1.4.1  Rivlin's Identities ................................ 27
     1.4.2  Other Related Identities ........................... 28
     1.4.3  Solution of AX + XA = B, Given A and В ............. 29
     1.4.4  Solution of AX - XA = B, Given A and В ............. 31
            A with Distinct Eigenvalues ........................ 31
            A with Repeated Eigenvalues ........................ 32
1.5  ISOTROPIC TENSOR-VALUED FUNCTIONS ......................... 34
     1.5.1  A Class of Isotropic Tensor-valued Functions of
            Real-valued Second-order Tensors ................... 35
     1.5.2  A with Distinct Real Eigenvalues ................... 36
     1.5.3  A with Distinct Complex Eigenvalues ................ 37
     1.5.4  A with Two Repeated Eigenvalues .................... 37
     1.5.5  A with Three Repeated Eigenvalues .................. 38
1.6  DERIVATIVE OF ISOTROPIC TENSOR-VALUED FUNCTION ............ 39
     1.6.1  Derivative of a Second-order Tensor ................ 40
     1.6.2  Coordinate-independent Representation .............. 41
     1.6.3  Representation of f(A) ............................. 41
            Distinct Eigenvalues ............................... 42
            Two Repeated Eigenvalues ........................... 42
            Three Repeated Eigenvalues ......................... 43
     1.6.4  Expression for g{A, HA(Ǻ)} ......................... 44
1.7  REFERENCES ................................................ 47

2    KINEMATICS ................................................ 49
2.1  MOTION AND DEFORMATION OF A CONTINUUM ..................... 51
     2.1.1  Deformation Gradient ............................... 52
     2.1.2  Principal Stretches ................................ 53
2.2  POLAR DECOMPOSITION ....................................... 55
     2.2.1  Spectral Representation ............................ 55
     2.2.2  Basic Invariants and Direct Evaluation of U, R,
            and V .............................................. 56
     2.2.3  Lagrangian and Eulerian Triads ..................... 59
     2.2.4  Transformation of Volume Elements .................. 61
     2.2.5  Transformation of Surface Elements ................. 62
2.3  STRAIN MEASURES ........................................... 63
     2.3.1  Explicit Representation of General Strain
            Measures in Terms of U and V ....................... 63
            Distinct Principal Stretches ....................... 64
            Two Repeated Principal Stretches ................... 64
            Three Repeated Principal Stretches ................. 65
     2.3.2  Required Properties of Strain Measures ............. 66
     2.3.3  Lagrangian and Eulerian Strain Tensors ............. 66
     2.3.4  Biot's Strain Measure .............................. 66
     2.3.5  Logarithmic Strain Measure ......................... 66
     2.3.6  Other Strain Measures .............................. 67
2.4  VELOCITY AND ACCELERATION ................................. 68
     2.4.1  Velocity ........................................... 68
     2.4.2  Acceleration ....................................... 68
2.5  DEFORMATION-RATE AND SPIN TENSORS ......................... 69
     2.5.1  Deformation-rate and Spin Tensors .................. 69
     2.5.2  Stretching, Shearing, and Volumetric Deformation
            Rate ............................................... 70
2.6  OTHER SPIN TENSORS ........................................ 71
2.7  RELATIONS BETWEEN RIGHT STRETCH RATE AND DEFORMATION
     RATE ...................................................... 72
     2.7.1 Alternative Coordinate-independent Expressions ...... 74
2.8  RELATIONS BETWEEN LEFT STRETCH RATE AND DEFORMATION RATE .. 76
     2.8.1 Alternative Coordinate-independent Expressions ...... 77
2.9  RELATIONS AMONG VARIOUS SPIN TENSORS ...................... 79
2.10 STRAIN RATES .............................................. 82
     2.10.1 Strain Rates in Lagrangian Triad ................... 82
     2.10.2 Strain Rates in Eulerian Triad ..................... 84
     2.10.3 Coordinate-independent Expressions ................. 84
     2.10.4 Summary of Coordinate-independent Expressions for
            General Strain Rates ............................... 86
     Distinct Eigenvalues ...................................... 86
     Two Repeated Eigenvalues .................................. 87
     Three Repeated Eigenvalues ................................ 87
2.11 REFERENCES ................................................ 87

3    STRESS AND STRESS-RATE MEASURES, AND BALANCE RELATIONS .... 89
3.1  STRESS MEASURES ........................................... 91
     3.1.1  Balance of Angular and Linear Momentum ............. 91
     3.1.2  Second Piola-Kirchhoff Stress ...................... 92
     3.1.3  General Relations in Principal Coordinates ......... 93
     3.1.4  General Coordinate-independent Relations ........... 93
            Distinct Principal Strains ......................... 95
            Two Repeated Principal Strains ..................... 95
            Three Repeated Principal Strains ................... 95
     3.1.5  First-order Accurate Expressions ................... 96
     3.1.6  Stress Conjugate to Lagrangian Strain Measure ...... 97
     3.1.7  Stress Conjugate to Biot's Strain Measure .......... 97
     3.1.8  Stress Conjugate to Logarithmic Strain Measure ..... 97
     3.1.9  Stresses Conjugate to Other Strain Measures ........ 98
     3.1.10 Nominal Stress ..................................... 98
     3.1.11 Summary of Relations Among Various Stress
            Measures ........................................... 99
3.2  PHYSICAL RELATIONS AMONG COMMONLY USED STRESS MEASURES .... 99
     3.2.1  Contravariant Components of Kirchhoff Stress ...... 101
     3.2.2  Cartesian-contravariant Components of Kirchhoff
            Stress ............................................ 102
     3.2.3  Covariant-contravariant Components of Kirchhoff
            Stress ............................................ 103
     3.2.4  Covariant Components of Kirchhoff Stress .......... 103
     3.2.5  Cartesian-covariant Components of Kirchhoff
            Stress ............................................ 104
3.3  STRESS-RATE MEASURES ..................................... 105
     3.3.1  Jaumann Stress Rate ............................... 105
     3.3.2  Convected Stress Rate ............................. 105
3.4  GENERAL RESULTS ON OBIECTIVE STRESS RATES ................ 107
     3.4.1  General Relation Connecting Objective Stress
            Rates ............................................. 107
3.5  STRESS RATES WITH CURRENT STATE AS REFERENCE ............. 109
     3.5.1 Nominal Stress Rate ................................ 109
3.6  BALANCE RELATIONS AND BOUNDARY-VALUE PROBLEMS ............ 110
     3.6.1  Conservation of Mass .............................. 110
     3.6.2  Balance of Linear Momentum ........................ 110
     3.6.3  Balance of Angular Momentum ....................... 111
     3.6.4  Conservation of Energy ............................ 111
     3.6.5  Boundary-Value Problems ........................... 111
3.7  PRINCIPLE OF VIRTUAL WORK ................................ 112
3.8  FINITE-ELEMENT FORMULATION ............................... 113
     3.8.1  Weak Form of Equations of Motion in the Current
            Configuration ..................................... 114
     3.8.2  Weak Form of the Rate Equations of Motion ......... 115
     3.8.3  Discretized Equations of Motion ................... 117
3.9  BALANCE RELATIONS WITH SURFACES OF DISCONTINUITY ......... 118
     3.9.1  Kinematics of Volume Integrals .................... 118
     3.9.2  Transport Theorem ................................. 119
     3.9.3  Dynamical Conditions at Surfaces of
            Discontinuity ..................................... 119
     3.9.4  Balance Relations at Surfaces of Discontinuity .... 121
3.10 GENERAL VARIATIONAL PRINCIPLES FOR HYPERELASTIC
     MATERIALS ................................................ 122
     3.10.1 Preliminaries ..................................... 124
     3.10.2 General Variational Principles .................... 125
     3.10.3 General Variational Principle in Terms of Nominal
            Stress and Deformation Gradient ................... 127
     3.10.4 Variational Principle with Two Independent
            Fields ............................................ 128
            Strain-energy Functional .......................... 128
            Complementary-energy Functional ................... 130
     3.10.5 Variational Principles with Discontinuous Fields .. 132
     3.10.6 Incremental Formulation ........................... 133
     3.10.7 Linearized Formulation ............................ 137
3.11 REFERENCES ............................................... 138

4    CONTINUUM THEORIES OF ELASTOPLASTICITY ................... 143
4.1  ELASTIC AND INELASTIC POTENTIALS ......................... 145
     4.1.1  Elastic Potentials ................................ 145
     4.1.2  Inelastic Potential and Normality Rule ............ 148
     4.1.3  Normality Rules ................................... 149
     4.1.4  On the Existence of the Inelastic Potential ....... 150
4.2  RATE-INDEPENDENT THEORIES ................................ 152
     4.2.1  Yield Surface ..................................... 153
     4.2.2  Constitutive Relations: Smooth Yield Surface ...... 153
     4.2.3  Yield Surface in Stress Space ..................... 153
     4.2.4  Yield Surface in Strain Space ..................... 155
     4.2.5  Flow Potential and Associative Flow Rule .......... 157
     4.2.6  The  J2-flow Theory with Isotropic Hardening ...... 158
     4.2.7  The  J2-flow Theory with Kinematic Hardening ...... 160
     4.2.8  The  J2-flow Theory with Combined Isotropic-
            kinematic Hardening ............................... 163
4.3  DILATANCY AND PRESSURE SENSITIVITY ....................... 163
     4.3.1  Nonassociative Plasticity with Dilatancy and
            Friction .......................................... 165
     4.3.2  Application: Triaxial Test of Soils ............... 168
     4.3.3  A Model for Cohesionless Sands .................... 171
     4.3.4  Model with Cohesion ............................... 176
     4.3.5  Simple Shear ...................................... 177
     4.3.6  Comparison with Experimental Results .............. 177
     4.3.7  Application to Porous Metals ...................... 181
4.4  YIELD VERTEX MODELS ...................................... 183
     4.4.1  Strain-space Representation ....................... 184
     4.4.2  Stress-space Representation ....................... 184
     4.4.3  Consistency Conditions ............................ 185
4.5  NONLINEAR ELASTICITY AND DEFORMATION THEORIES ............ 185
     4.5.1  Isotropic Elasticity .............................. 186
     4.5.2  The J2-deformation Theory ......................... 187
     4.5.3  Generalization to Three-dimensional Vertex Model .. 188
     4.5.4  Relation to Granular-material Models and Summary
            of Equations ...................................... 190
4.6  THE  J2-FLOW THEORY WITH NONCOAXIALITY ................... 191
     4.6.1 Nondilatant Model with Noncoaxiality ............... 191
4.7  MODELS FOR FRICTIONAL GRANULAR MATERIALS ................. 192
     4.7.1  Backstress, Fabric, and Dilatancy ................. 196
     4.7.2  Yield Criterion ................................... 198
     4.7.3  Plastic Strain Rate with Dilatancy and
            Noncoaxiality ..................................... 199
     4.7.4  Energy Balance Equation ........................... 200
     4.7.5  Dilatancy, Friction, and Fabric ................... 201
     4.7.6  Evolution Equations ............................... 203
     4.7.7  Elasticity Relations .............................. 206
     4.7.8  General Constitutive Relations .................... 208
     4.7.9  The Case of Isotropic Elasticity .................. 210
     4.7.10 Granular Materials with Vanishing Elastic Range
            in Shearing ....................................... 210
4.8  RATE-DEPENDENT THEORIES .................................. 212
     4.8.1  Flow Stress: Empirical Models ..................... 214
     4.8.2  Physically-based Models ........................... 217
     4.8.3  Thermal Activation and Flow Stress ................ 219
     4.8.4  A Simple Model .................................... 221
     4.8.5  More General Models ............................... 222
     4.8.6  Dislocations as Short-range Barriers .............. 222
     4.8.7  Effect of Long-range Barriers ..................... 226
     4.8.8  Drag-controlled Plastic Flow ...................... 227
     4.8.9  Application: Flow Stress of Commercially Pure
            Tantalum .......................................... 229
            Data Analysis ..................................... 231
            Effect of Long-range Barriers ..................... 231
            Comparison with Data used for Modeling ............ 233
            Discussion of the Model ........................... 234
            Application to Molybdenum ......................... 235
     4.8.10 Application to OFHC Copper ........................ 235
            Experimental Data ................................. 237
            Effect of Long-range Barriers ..................... 237
            Other Metals ...................................... 241
     4.8.11 Rate-dependent J2-plasticity ...................... 242
     4.8.12 Viscoplastic J2-flow Theory ....................... 245
     4.8.13 Viscoplastic J2-flow Theory with Noncoaxiality .... 246
4.9  GENERAL ANISOTROPIC ELASTOPLASTICITY ..................... 246
     4.9.1  Decomposition of Deformation Gradient ............. 250
     4.9.2  Relations Among Rate Quantities ................... 252
     4.9.3  Explicit Expressions for Objective Spin Tensors
            Ŵe, Ŵp, We, and Wp ................................ 255
     4.9.4  Material Frame Indifference ....................... 258
     4.9.5  Elastic Response .................................. 259
     4.9.6  Comments on Elastic Anisotropy .................... 262
     4.9.7  Calculation of Stress Rate ........................ 266
     4.9.8  Small Elastic Deformations ........................ 267
     4.9.9  Evolution of Back Stress .......................... 269
     4.9.10 Alternative Decomposition of Deformation
            Gradient .......................................... 269
4.10 REFERENCES ............................................... 270

5    INTEGRATION OF CONTINUUM CONSTITUTIVE
     EQUATIONS ................................................ 285
5.1  INTRODUCTION ............................................. 287
5.2  INCREMENTAL KINEMATICS ................................... 288
     5.2.1  Constant Velocity Gradient ........................ 289
     5.2.2  Unidirectional Stretch ............................ 290
     5.2.3  Exact Coordinate-independent Relations Between
            Velocity and Incremental Deformation Gradients .... 293
            Constant Velocity Gradient ........................ 293
            Unidirectional Stretch ............................ 294
5.3  I2-FLOW THEORIES ......................................... 296
     5.3.1  Rate-independent Model ............................ 297
     5.3.2  Rate-dependent Model .............................. 297
     5.3.3  Thermal Softening with Isotropic Hardening ........ 298
5.4  PLASTIC-PREDICTOR/ELASTIC-CORRECTOR METHOD WITH ERROR
     ESTIMATE ................................................. 300
     5.4.1  Stiff Systems ..................................... 301
     5.4.2  The Constitutive Algorithm ........................ 301
            (A) Rate-independent elastoplasticity ............. 303
            (B) Rate-dependent elastoviscoplasticity .......... 304
     5.4.3  Error Estimate .................................... 304
            Case I: Rate-independent elastoplasticity ......... 306
            Case II: Rate-dependent elastoviscoplasticity ..... 306
5.5  SINGULAR PERTURBATION METHOD FOR CONSTITUTIVE
     ALGORITHMS ............................................... 308
     5.5.1  Singular Perturbation Solution .................... 309
     5.5.2  Rate-independent Elastoplasticity ................. 311
     5.5.3  Rate-dependent Elastoviscoplasticity .............. 312
     5.5.4  Modified Outer Solution Method .................... 314
5.6  PROPORTIONAL LOADING ..................................... 315
     5.6.1  Rate-independent Model ............................ 316
            Forward-gradient Method ........................... 316
            Iterative Method .................................. 317
            Plastic-predictor/Elastic-corrector Method ........ 317
     5.6.2  Rate-dependent Model .............................. 319
            Tangent-modulus Method ............................ 319
            Iterative Method .................................. 320
            Plastic-predictor/Elastic-corrector Method ........ 321
            Computational Steps in Plastic-predictor/
            Elastic-corrector Method .......................... 326
     5.6.3  Asymptotic Analysis ............................... 327
     5.6.4  Reverse Loading ................................... 328
            Rate-independent Model ............................ 328
            Rate-dependent Model .............................. 329
5.7  INTEGRATION FOR UNIDIRECTIONAL STRETCH ................... 330
     5.7.1  Elastic, Perfectly-plastic Model .................. 331
            Radial-return Method .............................. 331
            Exact Integration ................................. 332
     5.7.2  Rate-independent Model ............................ 333
            Generalized Radial-return Method .................. 333
            Computational Steps ............................... 334
            Example ........................................... 335
            Perfect-plasticity Path ........................... 337
            Computational Steps ............................... 338
     5.7.3  Rate-dependent Model .............................. 339
            Generalized Radial-return Method .................. 340
            Computational Steps ............................... 341
            Example ........................................... 343
            Perfect-plasticity Path ........................... 343
            Computational Steps ............................... 346
     5.7.4  Elasticity-dominated Deformation .................. 348
            Rate-independent Model ............................ 349
            Rate-dependent Model .............................. 350
            (i) Strain-rate softening ......................... 351
            (ii) Strain-rate hardening and unloading .......... 352
5.8  INTEGRATION FOR CONSTANT VELOCITY GRADIENT ............... 353
     5.8.1  Elastic, Perfectly-plastic Model .................. 353
            Generalized Radial-return Method .................. 353
            Approximate Integration ........................... 356
            Exact Integration  ................................ 358
            Approximate but Effective Integration Procedure ... 361
     5.8.2  Rate-independent Model ............................ 362
            Computational Steps for Generalized Radial-
            return Method ..................................... 362
            Computational Steps for the Perfect-plasticity
            Path Method ....................................... 364
     5.8.3  Rate-dependent Model .............................. 367
            Computational Steps for Generalized Radial-
            return Method ..................................... 367
            Computational Steps for the Perfect-plasticity
            Path Method ....................................... 369
5.9   REFERENCES .............................................. 373
     APPENDIX 5.A IDENTITIES FOR SECOND-ORDER DEVIATORIC
     AND SKEWSYMMETRIC TENSORS ................................ 375
     APPENDIX 5.B SOLUTION OF A + θ(AW - WA) = В .............. 377

6    FINITE ELASTOPLASTIC DEFORMATION OF SINGLE CRYSTALS ...... 381
6.1  PHYSICS OF CRYSTAL PLASTICITY ............................ 383
     6.1.1  Crystal Structure and Elasticity .................. 383
     6.1.2  Plasticity and Slip ............................... 385
     6.1.3  Dislocations ...................................... 386
     6.1.4  Burgers'Vector .................................... 387
     6.1.5  Action of a Stress Field on a Dislocation ......... 390
     6.1.6  Elastic Field of a Dislocation .................... 393
            Screw Dislocation ................................. 393
            Edge Dislocation .................................. 395
            A Dislocation in an Anisotropic Solid ............. 397
     6.1.7  Slip Systems ...................................... 400
     6.1.8  Slip Systems in fee and bec Crystals .............. 400
     6.1.9  Dislocation-induced Distortion .................... 401
     6.1.10 Dislocation Motion and Plastic Distortion Rate .... 401
6.2  KINEMATICS OF FINITE DEFORMATION OF SINGLE CRYSTALS ...... 403
     6.2.1  Decomposition of Deformation Gradient ............. 404
     6.2.2  Decomposition of Velocity Gradient ................ 407
     6.2.3  Plastic Distortion ................................ 411
     6.2.4  Elastic Lattice Distortion Rate and Spin .......... 413
     6.2.5  Small Lattice Distortion .......................... 415
6.3  CONSTITUTIVE EQUATIONS FOR SINGLE CRYSTALS ............... 415
     6.3.1  Crystal Elasticity ................................ 416
     6.3.2  Crystal Elastoplasticity Relative to Current
            Configuration ..................................... 417
     6.3.3  Crystal Elastoplasticity with General Strain and
            Stress Measures ................................... 422
     6.3.4  Crystal Elastoplasticity Relative to Elastically
            Relaxed Lattice ................................... 422
     6.3.5  Crystal Elastoplasticity Relative to Undeformed
            Configuration ..................................... 424
     6.3.6  Rate of Stress Work and Measure-invariance of
            Plastic Dissipation ............................... 425
     6.3.7  Crystal Elastoplasticity with Small Elastic
            Strains ........................................... 426
6.4  RESISTANCE TO SLIP AND WORKHARDENING: RATE-INDEPENDENT
     MODELS ................................................... 427
     6.4.1 Schmid Law ......................................... 427
     6.4.2  Yield Surface and Plastic Normality in Stress
            Space ............................................. 429
     6.4.3  Yield Surface and Plastic Normality in Strain
            Space ............................................. 432
     6.4.4  Slip Rates ........................................ 433
     6.4.5  Critical Shear Stress and Hardening Matrix ........ 434
     6.4.6  Latent Hardening .................................. 436
     6.4.7  Non-Schmid Effects ................................ 440
6.5  PHYSICALLY-BASED SLIP MODELS: RATE AND TEMPERATURE
     EFFECTS .................................................. 440
     6.5.1  Long-range Barriers and Latent Hardening .......... 442
     6.5.2  Self Hardening of a Previously Latent System ...... 445
     6.5.3  Resistance to Crystalline Slip: Long-range
            Barriers .......................................... 447
     6.5.4  Resistance to Crystalline Slip: Short-range
            Barriers .......................................... 448
            Slip Rate in bcc Crystals ......................... 448
            Slip Rate in fee Crystals ......................... 450
     6.5.5  Effect of Viscous Drag ............................ 451
     6.5.6  bcc Crystals ...................................... 452
            Interdependency of Slip Systems ................... 452
     6.5.7  fee Crystals ...................................... 453
     6.5.8  Schmid Rule ....................................... 457
     6.5.9  Fully Developed Plastic Flow ...................... 457
            Eight Active Slip Systems ......................... 458
            Six Active Slip Systems ........................... 458
     6.5.10 Numerical Simulation of Single Crystals ........... 461
            Kinematical Relations ............................. 461
            Calculation of Temperature ........................ 462
     6.5.11 Computational Algorithm ........................... 462
            Plastic Predictor and Transition Regime ........... 464
            Elastic Corrector ................................. 465
            Lattice Rotation .................................. 466
            Resolved Shear Stresses of Inactive Slip Systems .. 467
            Rapidly Changing Regime ........................... 467
            Fully Developed Flow .............................. 467
     6.5.12 Power-law Model for fee Crystals .................. 468
            Example, fee Crystal .............................. 468
     6.5.13 Dynamic Collapse of Single-crystal Hollow
            Cylinder .......................................... 469
     6.5.14 Dislocation-based Model for bcc and fee Crystals .. 471
            Example, bcc Crystal .............................. 473
     6.5.15 bcc and fee Polycrystals .......................... 473
            Polycrystal Calculations .......................... 474
            Simulation of Response of Tantalum ................ 475
     6.5.16 Numerical Simulation of Polycrystal Copper ........ 476
     6.5.17 Length Scales and Size Effect in Crystal
            Plasticity ........................................ 476
            Dislocations and Length Scales .................... 480
            A Simple Couple-stress Theory ..................... 483
            Microstructure and Continuously Distributed
            Dislocations ...................................... 486
            Phenomenological Strain-gradient Plasticity ....... 490
6.6  REFERENCES ............................................... 491
     APPENDIX 6.A MILLER INDICES .............................. 498
     Miller Indices for Directions ............................ 499
     Miller Indices for Planes ................................ 500
     hep Crystals ............................................. 500
     Zone Axis ................................................ 501

7    FINITE PLASTIC DEFORMATION OF GRANULAR MATERIALS ......... 503
7.1  INELASTIC DEFORMATION OF GRANULAR MASSES ................. 505
     7.1.1  Dilatancy, Densification, and Fabric in Simple
            Shearing .......................................... 506
     7.1.2  Relation to Continuum Models ...................... 513
7.2  STRESS MEASURES IN GRANULAR MASSES ....................... 514
     7.2.1  Overall Cauchy Stress in Granular Media ........... 515
            Theorem I ......................................... 515
            Contact Forces and Branch Vectors ................. 517
            Theorem II ........................................ 518
            Direct Proof ...................................... 518
            Proof by Virtual-work Method ...................... 519
     7.2.2  Other Overall Stress Measures in Granular Media ... 519
     7.2.3  Classification of Contacts ........................ 520
            Distribution Density Function of Branch
            Orientations ...................................... 521
     7.2.4  Overall Stress Tensor and Average Traction
            Vectors ........................................... 522
            Distribution Density Function of Branch
            Intersections with a Plane ........................ 523
     7.2.5  Symmetry of Overall Cauchy Stress Tensor .......... 525
     7.2.6  Stress-fabric Relations ........................... 525
     7.2.7  Stress-fabric Relations for Spherical Granules .... 526
     7.2.8  Stress-fabric Relations for Nonspherical
            Granules .......................................... 529
     7.2.9  Nominal Stress Tensor ............................. 532
     7.2.10 Stress-rate Measures .............................. 533
7.3  FABRIC MEASURES IN AN ASSEMBLY OF RIGID GRANULES ......... 533
     7.3.1  Scalar Measures ................................... 534
            Void Ratio and Porosity ........................... 534
            Density of Grains ................................. 534
            Average Coordination Number ....................... 535
            Density of Contacts ............................... 535
            Average Branch Length ............................. 536
     7.3.2  Vector Measures ................................... 537
            Density of Branch Intersections with a Plane ...... 537
            Angular Distribution of Branches Intersecting
            the ν-plane ....................................... 539
            Solid Paths ....................................... 539
     7.3.3  Fabric Tensors .................................... 541
            Angular Distribution of Branches and Contact
            Normals ........................................... 541
     7.3.4  Other Fabric Measures ............................. 543
7.4  EXPERIMENTAL EVALUATION OF FABRIC-STRESS RELATIONS ....... 544
     7.4.1  Photoelastic Granules ............................. 546
     7.4.2  Biaxial Experiments ............................... 547
            Apparatus ......................................... 547
            Sample Preparation ................................ 547
            Test Results ...................................... 549
            Evolution of Distribution of Contact Normals ...... 551
     7.4.3  Simple Shearing Experiments ....................... 554
            Apparatus ......................................... 554
            Sample Preparation and Test Procedure ............. 556
            Stress-microstructure Relation .................... 558
            Mechanism of Strain Hardening ..................... 559
            Dilatancy ......................................... 560
            Representation of Distribution Density Functions .. 561
7.5  MICROMECHANICALLY-BASED CONSTITUTIVE MODELS FOR
     FRICTIONAL DEFORMATION OF GRANULAR MASSES ................ 564
     7.5.1  Previous Work ..................................... 564
     7.5.2  Model Assumptions ................................. 567
     7.5.3  Resistance to Sliding ............................. 568
     7.5.4  A Two-dimensional Model ........................... 570
     7.5.5  Meso-scale Yield Condition ........................ 573
     7.5.6  Loading and Unloading ............................. 576
     7.5.7  A Rate-independent Double-sliding Model ........... 577
     7.5.8  Deformation Rate and Spin, Based on Double
            Sliding ........................................... 579
     7.5.9  Elasticity Relations .............................. 581
     7.5.10 Fabric and its Evolution .......................... 582
     7.5.11 Continuum Approximation ........................... 583
     7.5.12 Void Ratio ........................................ 583
     7.5.13 Consistency Condition ............................. 584
     7.5.14 Dilatancy ......................................... 585
     7.5.15 Material Parameters ............................... 585
     7.5.16 Example ........................................... 586
     7.5.17 Generalization to Three Dimensions ................ 588
            Stress Tensor ..................................... 588
            Stress-rate Tensor ................................ 588
            Fabric and its Evolution .......................... 589
            Yield and Consistency Conditions .................. 589
            Dilatancy ......................................... 589
7.6  REFERENCES ............................................... 590

8    AVERAGE QUANTITIES AND HOMOGENIZATION MODELS ............. 595
8.1  AVERAGING THEOREMS ....................................... 597
     8.1.1  Comments on Continuum Length Scale ................ 597
     8.1.2  Choice of Deformation and Stress Measures ......... 598
            Notation .......................................... 598
     8.1.3  Average Deformation and Deformation-rate
            Measures .......................................... 599
     8.1.4  Average Stress Measures ........................... 600
     8.1.5  Average Stress-rate Measures ...................... 601
     8.1.6  General Identities ................................ 601
     8.1.7  Uniform Boundary Tractions and Traction Rates ..... 603
     8.1.8  Uniform Boundary Displacements and Displacement
            Rates ............................................. 603
     8.1.9  General Identities for Uniform Boundary Data ...... 604
8.2  HOMOGENIZATION AND CONCENTRATION TENSORS ................. 604
     8.2.1  Eshelby's Tensor .................................. 605
     8.2.2  General Phase-Transformation Problem .............. 606
     8.2.3  Homogenization and Eigenvelocity Gradient ......... 607
     8.2.4  Eigenstress Rate .................................. 610
     8.2.5  Consistency Conditions ............................ 611
     8.2.6  Concentration Tensors ............................. 613
8.3  THE GREEN FUNCTION AND CONCENTRATION TENSORS ............. 614
     8.3.1  Reciprocal Relations .............................. 615
     8.3.2  Green's Function .................................. 616
     8.3.3  The Body-force-rate Problem ....................... 617
     8.3.4  The Eigenvelocity Gradient or Eigenstress Rate
            Problem ........................................... 619
     8.3.5  Generalized Eshelby Tensor and its Conjugate ...... 621
8.4  AVERAGE QUANTITIES ....................................... 622
     8.4.1  Double-inclusion Problem .......................... 623
     8.4.2  Generalized Double-inclusion Problem .............. 626
     8.4.3  A Nested Sequence of Transforming Ellipsoidal
            Regions ........................................... 628
8.5  CALCULATION OF THE GREEN FUNCTION ........................ 630
     8.5.1  Strong Ellipticity and Green's Function ........... 631
     8.5.2  Green's Function .................................. 632
     8.5.3  Generalized Eshelby Tensor and its Conjugate ...... 634
8.6  AVERAGING MODELS ......................................... 637
     8.6.1  Consistency Restrictions for Concentration
            Tensors ........................................... 638
     8.6.2  Voigt and Reuss Models ............................ 640
     8.6.3  Dilute-distribution Model ......................... 640
     8.6.4  Self-consistent Model ............................. 640
     8.6.5  Double-inclusion Model ............................ 641
     8.6.6  Reduction to Self-consistent Model ................ 643
     8.6.7  Two-phase Model ................................... 643
     8.6.8  Overall Pseudo-compliance Tensor .................. 644
     8.6.9  Multi-inclusion Model ............................. 644
8.7  POLYCRYSTALS ............................................. 646
     8.7.1  Overall Moduli for Polycrystals ................... 647
     8.7.2  Self-consistent Model ............................. 648
     8.7.3  Choice of Reference State ......................... 648
     8.7.4  Updated Lagrangian Calculation .................... 650
     8.7.5  Rate-dependent Models ............................. 650
8.8  REFERENCES ............................................... 652
     APPENDIX 8.A CALCULATION OF THE ESHELBY TENSOR IN TWO
     DIMENSIONS ............................................... 656

9    SPECIAL EXPERIMENTAL TECHNIQUES .......................... 661
9.1  HOPKINSON BAR, KOLSKY BAR, AND RECOVERY SYSTEMS .......... 663
     9.1.1  Historical Origin of Hopkinson Techniques ......... 663
     9.1.2  Classical Kolsky Method ........................... 664
     9.1.3  Limitation of the Kolsky Method ................... 665
9.2  MOMENTUM TRAPPING FOR TENSION AND COMPRESSION HOPKINSON
     BARS ..................................................... 666
     9.2.1  Tension Hopkinson Bar with Momentum Traps ......... 666
     9.2.2  Stress Reversal Technique ......................... 669
     9.2.3  Compression Hopkinson Bar with Momentum Trap ...... 670
     9.2.4  Strain-rate Jump .................................. 671
     9.2.5  Strain-rate Jump in Tension ....................... 674
     9.2.6  Recovery After Combined Compression-tension
            Loading ........................................... 675
     9.2.7  Recovery After Tension and Compression Loading .... 677
     9.2.8  Stress-pulse Profile Control ...................... 678
9.3  HIGH-TEMPERATURE DYNAMIC RECOVERY EXPERIMENTS ............ 679
     9.3.1  High-temperature, High Strain-rate Compression
            Testing of Metals ................................. 679
     9.3.2  Isothermal Flow Stress of Metals at High
            Temperatures and High Strain Rates ................ 681
     9.3.3  Temperature Rise During High Strain-rate Plastic
            Deformation ....................................... 683
     9.3.4  Interrupted Hopkinson Experiments and Typical
            Results ........................................... 684
     Infrared Detector Calibration ............................ 686
     Results and Discussion ................................... 687
     Elastic Energy of Dislocations ........................... 689
9.4  HOPKINSON TECHNIQUES FOR DYNAMIC TRIAXIAL COMPRESSION
     TESTS .................................................... 690
     9.4.1 Operation of Triaxial Hopkinson System ............. 691
9.5  SPECIAL TRIAXIAL CELL TO TEST FRICTIONAL GRANULES ........ 692
     9.5.1  Specimen Preparation and Installation ............. 693
     9.5.2  Experimental Procedure ............................ 696
     9.5.3  Experimental Control and Data Acquisition ......... 699
     9.5.4  Typical Experimental Results ...................... 699
     9.5.5  Energy Dissipation and Pore Water Pressure ........ 702
9.6  RADIOGRAPHIC OBSERVATION OF SHEARBANDS IN LIQUEFACTION ... 703
     9.6.1  Experimental Setup ................................ 705
     9.6.2  Experimental Observation .......................... 707
9.7  REFERENCES ............................................... 711
CITED AUTHORS ................................................. 715
SUBJECT INDEX ................................................. 723


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:50 2019. Размер: 45,072 bytes.
Посещение N 1524 c 12.11.2013