Horvath S. Weighted network analysis: applications in genomics and systems biology (New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHorvath S. Weighted network analysis: applications in genomics and systems biology. - New York: Springer, 2011. - xxiii, 421 p. - Incl. bibl. ref. - Ind.: p.413-421. - ISBN 978-1-4419-8818-8
 

Оглавление / Contents
 
1  Networks and Fundamental Concepts ............................ 1
   1.1  Network Adjacency Matrix ................................ 1
        1.1.1  Connectivity and Related Concepts ................ 2
        1.1.2  Social Network Analogy: Affection Network ........ 2
   1.2  Analysis Tasks Amenable to Network Methods .............. 3
   1.3  Fundamental Network Concepts ............................ 4
        1.3.1  Matrix and Vector Notation ....................... 5
        1.3.2  Scaled Connectivity .............................. 5
        1.3.3  Scale-Free Topology Fitting Index ................ 6
        1.3.4  Network Heterogeneity ............................ 8
        1.3.5  Maximum Adjacency Ratio .......................... 8
        1.3.6  Network Density .................................. 9
        1.3.7  Quantiles of the Adjacency Matrix ............... 10
        1.3.8  Network Centralization .......................... 10
        1.3.9  Clustering Coefficient .......................... 11
        1.3.10 Hub Node Significance ........................... 11
        1.3.11 Network Significance Measure .................... 12
        1.3.12 Centroid Significance and Centroid Conformity ... 12
        1.3.13 Topological Overlap Measure ..................... 13
        1.3.14 Generalized Topological Overlap for Unweighted
               Networks ........................................ 14
        1.3.15 Multinode Topological Overlap Measure ........... 16
   1.4  Neighborhood Analysis in PPI Networks .................. 18
        1.4.1  GTOM Analysis of Fly Protein-Protein
               Interaction Data ................................ 18
        1.4.2  MTOM Analysis of Yeast Protein-Protein
               Interaction Data ................................ 20
   1.5  Adjacency Function Based on Topological Overlap ........ 21
   1.6  R Functions for the Topological Overlap Matrix ......... 21
   1.7  Network Modules ........................................ 22
   1.8  Intramodular Network Concepts .......................... 24
   1.9  Networks Whose Nodes Are Modules ....................... 25
   1.10 Intermodular Network Concepts .......................... 26
   1.11 Network Concepts for Comparing Two Networks ............ 27
   1.12 R Code for Computing Network Concepts .................. 29
   1.13 Exercises .............................................. 30
   References .................................................. 32
2  Approximately Factorizable Networks ......................... 35
   2.1  Exactly Factorizable Networks .......................... 35
   2.2  Conformity for a Non-Factorizable Network .............. 36
        2.2.1  Algorithm for Computing the Node Conformity ..... 37
   2.3  Module-Based and Conformity-Based Approximation
        of a Network ........................................... 39
   2.4  Exercises .............................................. 42
        References ............................................. 43
3  Different Types of Network Concepts ......................... 45
   3.1  Network Concept Functions .............................. 46
   3.2  CF-Based Network Concepts .............................. 48
   3.3  Approximate CF-Based Network Concepts .................. 49
   3.4  Fundamental Network Concepts Versus CF-Based Analogs ... 50
   3.5  CF-Based Concepts Versus Approximate CF-Based Analog ... 51
   3.6  Higher Order Approximations of Fundamental Concepts .... 52
   3.7  Fundamental Concepts Versus Approx. CF-Based Analogs ... 53
   3.8  Relationships Among Fundamental Network Concepts ....... 54
        3.8.1  Relationships for the Topological Overlap
               Matrix .......................................... 55
   3.9  Alternative Expression of the Factorizability F(A) ..... 56
   3.10 Approximately Factorizable PPI Modules ................. 56
   3.11 Studying Block Diagonal Adjacency Matrices ............. 61
   3.12 Approximate CF-Based Intermodular Network Concepts ..... 63
   3.13 CF-Based Network Concepts for Comparing Two Networks ... 64
   3.14 Discussion ............................................. 65
   3.15 RCode .................................................. 67
   3.16 Exercises .............................................. 69
   References .................................................. 74
4  Adjacency Functions and Their Topological Effects ........... 77
   4.1  Definition of Important Adjacency Functions ............ 77
   4.2  Topological Effects of the Power Transformation
        AFpower ................................................ 79
        4.2.1  Studying the Power AF Using Approx. CF-Based
               Concepts ........................................ 80
        4.2.2  MAR Is a Nonincreasing Function of β ............ 80
   4.3  Topological Criteria for Choosing AF Parameters ........ 82
   4.4  Differential Network Concepts for Choosing AF
        Parameters ............................................. 83
   4.5  Power AF for Calibrating Weighted Networks ............. 84
   4.6  Definition of Threshold-Preserving Adjacency
        Functions .............................................. 84
   4.7  Equivalence of Network Construction Methods ............ 86
   4.8  Exercises .............................................. 87
   References .................................................. 89
5  Correlation and Gene Co-Expression Networks ................. 91
   5.1  Relating Two Numeric Vectors ........................... 91
        5.1.1  Pearson Correlation ............................. 93
        5.1.2  Robust Alternatives to the Pearson Correlation .. 94
        5.1.3  Biweight Midcorrelation ......................... 95
        5.1.4  C-Index ......................................... 96
   5.2  Weighted and Unweighted Correlation Networks ........... 97
        5.2.1  Social Network Analogy: Affection Network ....... 98
   5.3  General Correlation Networks ........................... 99
   5.4  Gene Co-Expression Networks ........................... 101
   5.5  Mouse Tissue Gene Expression Data from of an F2
        Intercross ............................................ 103
   5.6  Overview of Weighted Gene Co-Expression Network
        Analysis .............................................. 108
   5.7  Brain Cancer Network Application ...................... 110
   5.8  R Code for Studying the Effect of Thresholding ........ 112
   5.9  Gene Network (Re-)Construction Methods ................ 114
   5.10 RCode ................................................. 115
   5.11 Exercises ............................................. 117
   References ................................................. 118
6  Geometric Interpretation of Correlation Networks
   Using the Singular Value Decomposition ..................... 123
   6.1  Singular Value Decomposition of a Matrix datX ......... 123
        6.1.1  Signal Balancing Based on Right Singular
               Vectors ........................................ 124
        6.1.2  Eigenvectors, Eigengenes, and Left Singular
               Vectors ........................................ 125
   6.2  Characterizing Approx. Factorizable Correlation
        Networks .............................................. 126
   6.3  Eigenvector-Based Network Concepts .................... 129
        6.3.1  Relationships Among Density Concepts in
               Correlation Networks ........................... 131
   6.4  Eigenvector-Based Approximations of Intermodular
        Concepts .............................................. 132
   6.5  Networks Whose Nodes are Correlation Modules .......... 134
   6.6  Dictionary for Fundamental-Based and Eigenvector-
        Based Concepts ........................................ 135
   6.7  Geometric Interpretation .............................. 136
        6.7.1  Interpretation of Eigenvector-Based Concepts ... 136
        6.7.2  Interpretation of a Correlation Network ........ 137
        6.7.3  Interpretation of the Factorizability .......... 138
   6.8  Network Implications of the Geometric Interpretation .. 139
        6.8.1  Statistical Significance of Network Concepts ... 140
        6.8.2  Intramodular Hubs Cannot be Intermediate
               Nodes .......................................... 140
        6.8.3  Characterizing Networks Where Hub Nodes
               Are Significant ................................ 140
   6.9  Data Analysis Implications of the Geometric
        Interpretation ........................................ 141
   6.10 Brain Cancer Network Application ...................... 143
   6.11 Module and Hub Significance in Men, Mice, and Yeast ... 147
   6.12 Summary ............................................... 150
   6.13 R Code for Simulating Gene Expression Data ............ 153
   6.14 Exercises ............................................. 157
   References ................................................. 159
7  Constructing Networks from Matrices ........................ 161
   7.1  Turning a Similarity Matrix into a Network ............ 161
   7.2  Turning a Symmetric Matrix into a Network ............. 162
   7.3  Turning a General Square Matrix into a Network ........ 163
   7.4  Turning a Dissimilarity or Distance into a Network .... 164
   7.5  Networks Based on Distances Between Vectors ........... 165
   7.6  Correlation Networks as Distance-Based Networks ....... 166
   7.7  Sample Networks for Outlier Detection ................. 167
   7.8  KL Dissimilarity Between Positive Definite Matrices ... 169
   7.9  KL Pre-Dissimilarity for Parameter Estimation ......... 170
   7.10 Adjacency Function Based on Distance Properties ....... 171
   7.11 Constructing Networks from Multiple Similarity
        Matrices .............................................. 172
        7.11.1 Consensus and Preservation Networks ............ 173
   7.12 Exercises ............................................. 175
   References ................................................. 178
8  Clustering Procedures and Module Detection ................. 179
   8.1  Cluster Object Scatters Versus Network Densities ...... 179
   8.2  Partitioning-Around-Medoids Clustering ................ 181
   8.3  Ј-Means Clustering .................................... 182
   8.4  Hierarchical Clustering ............................... 184
   8.5  Cophenetic Distance Based on a Hierarchical Cluster
        Tree .................................................. 186
   8.6  Defining Clusters from a Hierarchical Cluster Tree:
        The Dynamictreecut Library for R ...................... 188
   8.7  Cluster Quality Statistics Based on Network Concepts .. 192
   8.8  Cross-Tabulation-Based Cluster (Module) Preservation
        Statistics ............................................ 193
   8.9  Rand Index and Similarity Measures Between Two
        Clusterings ........................................... 195
        8.9.1  Co-Clustering Formulation of the Rand Index .... 196
        8.9.2  R Code for Cross-Tabulation and
               Co-Clustering .................................. 197
   8.10 Discussion of Clustering Methods ...................... 198
   8.11 Exercises ............................................. 200
   References ................................................. 205
9  Evaluating Whether a Module is Preserved in Another
   Network .................................................... 207
   9.1  Introduction .......................................... 207
   9.2  Module Preservation Statistics ........................ 209
        9.2.1  Summarizing Preservation Statistics and
               Threshold Values ............................... 212
        9.2.2  Module Preservation Statistics for General
               Networks ....................................... 213
        9.2.3  Module Preservation Statistics for
               Correlation Networks ........................... 214
        9.2.4  Assessing Significance of Observed Module
               Preservation Statistics by Permutation Tests ... 218
        9.2.5  Composite Preservation Statistic Zsummary ...... 218
        9.2.6  Composite Preservation Statistic medianRank .... 220
   9.3  Cholesterol Biosynthesis Module Between Mouse
        Tissues ............................................... 221
   9.4  Human Brain Module Preservation in Chimpanzees ........ 224
   9.5  KEGG Pathways Between Human and Chimpanzee Brains ..... 231
   9.6  Simulation Studies of Module Preservation ............. 233
   9.7  Relationships Among Module Preservation Statistics .... 239
   9.8  Discussion of Module Preservation Statistics .......... 242
   9.9  R Code for Studying the Preservation of Modules ....... 244
   9.10 Exercises ............................................. 245
   References ................................................. 245
10 Association Measures and Statistical Significance
   Measures ................................................... 249
   10.1 Different Types of Random Variables ................... 249
   10.2 Permutation Tests for Calculating p Values ............ 250
   10.3 Computing p Values for Correlations ................... 252
   10.4 R Code for Calculating Correlation Test p Values ...... 254
   10.5 Multiple Comparison Correction Procedures for
        p Values .............................................. 255
   10.6 False Discovery Rates and q-values .................... 258
   10.7 R Code for Calculating g-values ....................... 260
   10.8 Multiple Comparison Correction as p Value
        Transformation ........................................ 262
   10.9 Alternative Approaches for Dealing with Many
        p Values .............................................. 265
   10.10 R Code for Standard Screening ........................ 266
   10.11 When Are Two Variable Screening Methods
         Equivalent? .......................................... 267
   10.12 Threshold-Equivalence of Linear Significance
         Measures ............................................. 269
   10.13 Network Screening .................................... 271
   10.14 General Definition of an Association Network ......... 272
   10.15 Rank-Equivalence and Threshold-Equivalence ........... 272
   10.16 Threshold-Equivalence of Linear Association
         Networks ............................................. 273
   10.17 Statistical Criteria for Choosing the Threshold ...... 274
   10.18 Exercises ............................................ 274
   References ................................................. 277
11 Structural Equation Models and Directed Networks ........... 279
   11.1  Testing Causal Models Using Likelihood Ratio Tests ... 279
         11.1.1 Depicting Causal Relationships in a Path
                Diagram ....................................... 280
         11.1.2 Path Diagram as Set of Structural Equations ... 282
         11.1.3 Deriving Model-Based Predictions of
                Covariances ................................... 283
         11.1.4 Maximum Likelihood Estimates of Model
                Parameters .................................... 285
         11.1.5 Model Fitting p Value and Likelihood Ratio
                Tests ......................................... 287
         11.1.6 Model Fitting Chi-Square Statistics and LRT ... 287
   11.2 R Code for Evaluating an SEM Model .................... 289
   11.3 Using Causal Anchors for Edge Orienting ............... 294
         11.3.1 Single Anchor Local Edge Orienting Score ...... 295
         11.3.2 Multi-Anchor LEO Score ........................ 297
         11.3.3 Thresholds for Local Edge Orienting Scores .... 299
   11.4 Weighted Directed Networks Based on LEO Scores ........ 299
   11.5 Systems Genetic Applications .......................... 300
   11.6 The Network Edge Orienting Method ..................... 301
         11.6.1 Step 1: Combine Quantitative Traits and
                SNPs .......................................... 301
         11.6.2 Step 2: Genetic Marker Selection and
                Assignment to Traits .......................... 303
         11.6.3 Step 3: Compute Local Edge Orienting Scores
                for Aggregating the Genetic Evidence
                in Favor of a Causal Orientation .............. 305
         11.6.4 Step 4: For Each Edge, Evaluate the
                Fit of the Underlying Local SEM Models ........ 305
         11.6.5 Step 5: Robustness Analysis with Respect
                to SNP Selection Parameters ................... 305
         11.6.6 Step 6: Repeat the Analysis for the Next
                A-B Trait-Trait Edge and Apply Edge Score
                Thresholds to Orient the Network .............. 307
         11.6.7 NEO Software and Output ....................... 307
         11.6.8 Screening for Genes that Are Reactive
                to Insigl ..................................... 308
         11.6.9 Discussion of NEO ............................. 308
   11.7 Correlation Tests of Causal Models .................... 310
   11.8 R Code for LEO Scores ................................. 311
         11.8.1 R Code for the LEO.SingleAnchor Score ......... 311
         11.8.2 R Code for the LEO.CPA ........................ 313
         11.8.3 R Code for the LEO.OCA Score .................. 315
   11.9 Exercises ............................................. 317
   References ................................................. 318
12 Integrated Weighted Correlation Network Analysis
   of Mouse Liver Gene Expression Data ........................ 321
   12.1 Constructing a Sample Network for Outlier Detection ... 321
   12.2 Co-Expression Modules in Female Mouse Livers .......... 324
         12.2.1 Choosing the Soft Threshold j3 Via
                Scale-Free Topology ........................... 324
         12.2.2 Automatic Module Detection Via Dynamic
                Tree Cutting .................................. 326
         12.2.3 Blockwise Module Detection for Large
                Networks ...................................... 327
         12.2.4 Manual, Stepwise Module Detection ............. 328
         12.2.5 Relating Modules to Physiological Traits ...... 330
         12.2.6 Output File for Gene Ontology Analysis ........ 333
   12.3 Systems Genetic Analysis with NEO ..................... 334
   12.4 Visualizing the Network ............................... 337
         12.4.1 Connectivity, TOM, and MDS Plots .............. 337
         12.4.2 VisANT Plot and Software ...................... 339
         12.4.3 Cytoscape and Pajek Software .................. 339
   12.5 Module Preservation Between Female and Male Mice ...... 340
   12.6 Consensus modules Between Female and Male Liver
        Tissues ............................................... 344
        12.6.1 Relating Consensus Modules to the Traits ....... 345
        12.6.2 Manual Consensus Module Analysis ............... 348
   12.7 Exercises ............................................. 350
   References ................................................. 351
13 Networks Based on Regression Models and Prediction
   Methods .................................................... 353
   13.1 Least Squares Regression and MLE ...................... 353
   13.2 R Commands for Simple Linear Regression ............... 355
   13.3 Likelihood Ratio Test for Linear Model Fit ............ 356
   13.4 Polynomial and Spline Regression Models ............... 358
   13.5 R Commands for Polynomial Regression and Spline
        Regression ............................................ 360
   13.6 Conditioning on Additional Covariates ................. 363
   13.7 Generalized Linear Models ............................. 364
   13.8 Model Fitting Indices and Accuracy Measures ........... 365
   13.9 Networks Based on Predictors and Linear Models ........ 365
   13.10 Partial Correlations and Related Networks ............ 366
   13.11 R Code for Partial Correlations ...................... 368
   13.12 Exercises ............................................ 368
   References ................................................. 372
14 Networks Between Categorical or Discretized Numeric
   Variables .................................................. 373
   14.1 Categorical Variables and Statistical Independence .... 373
   14.2 Entropy ............................................... 375
        14.2.1 Estimating the Density of a Random Variable .... 376
        14.2.2 Entropy of a Discretized Continuous Variable ... 378
   14.3 Association Measures Between Categorical Vectors ...... 379
         14.3.1 Association Measures Expressed in Terms of
                Counts ........................................ 381
         14.3.2 R Code for Relating Categorical Variables ..... 381
         14.3.3 Chi-Square Statistic Versus Cor in Case of
                Binary Variables .............................. 382
         14.3.4 Conditional Mutual Information ................ 383
   14.4 Relationships Between Networks of Categorical
        Vectors ............................................... 384
   14.5 Networks Based on Mutual Information 385
   14.6 Relationship Between Mutual Information and
        Correlation ........................................... 387
        14.6.1  Applications for Relating MI with Cor ......... 390
   14.7 ARACNE Algorithm ...................................... 391
        14.7.1 Generalizing the ARACNE Algorithm .............. 393
        14.7.2 Discussion of Mutual Information Networks ...... 394
        14.7.3 R Packages for Computing Mutual Information .... 395
   14.8 Exercises ............................................. 396
   References ................................................. 399
15 Network Based on the Joint Probability Distribution
   of Random Variables ........................................ 401
   15.1 Association Measures Based on Probability Densities ... 401
         15.1.1 Entropy(X) Versus Entropy(Discretize(X)) ...... 403
         15.1.2 Kullback-Leibler Divergence for Assessing
                Model Fit ..................................... 405
         15.1.3 KL Divergence of Multivariate Normal
                Distributions ................................. 406
         15.1.4 KL Divergence for Estimating Network
                Parameters .................................... 407
   15.2 Partitioning Function for the Joint Probability ....... 408
   15.3 Discussion ............................................ 409
   References ................................................. 410

Index ......................................................... 413


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:50 2019. Размер: 26,794 bytes.
Посещение N 1545 c 12.11.2013