High performance visualization: enabling extreme-scale scientific insight (Boca Raton, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHigh performance visualization: enabling extreme-scale scientific insight / ed. by E.W.Bethel, H.Childs, Ch.Hansen. - Boca Raton: CRC Press, 2013. - xxxviii, 446 p.: ill. - (Champman & Hall/CRC Computational Science). - Incl. bibl. ref. - Ind.: p.443-446. - ISBN 978-1-4398-7572-8
 

Оглавление / Contents
 
Foreword ........................................................ v
Preface ....................................................... vii
Contributor List ............................................... ix
List of Figures .............................................. xiii
List of Tables ................................................ xxi
Acknowledgments ............................................ xxxiii

1  Introduction ................................................. 1
   E. Wes Bethel
   1.1  Historical Perspective .................................. 1
   1.2  Moore's Law and the Data Tsunami ........................ 2
   1.3  Focus of this Book ...................................... 3
   1.4  Book Organization and Themes ............................ 3
   1.5  Conclusion .............................................. 6

I  Distributed Memory Parallel Concepts and Systems 

2  Parallel Visualization Frameworks ............................ 9
   Hank Childs
   2.1  Introduction ............................................ 9
   2.2  Background ............................................. 11
        2.2.1  Parallel Computing .............................. 11
        2.2.2  Data Flow Networks .............................. 12
   2.3  Parallelization Strategy ............................... 13
   2.4  Usage .................................................. 16
   2.5  Advanced Processing Techniques ......................... 17
        2.5.1  Contracts ....................................... 18
        2.5.2  Data Subsetting ................................. 19
        2.5.3  Parallelization Artifacts ....................... 19
        2.5.4  Scheduling ...................................... 21
   2.6  Conclusion ............................................. 22

3  Remote and Distributed Visualization Architectures .......... 25
   E. Wes Bethel and Mark Miller
   3.1  Introduction ........................................... 26
   3.2  Visualization Performance Fundamentals and Networks .... 26
   3.3  Send-Images Partitioning ............................... 28
   3.4  Send-Data Partitioning ................................. 30
   3.5  Send-Geometry Partitioning ............................. 31
   3.6  Hybrid and Adaptive Approaches ......................... 32
   3.7  Which Pipeline Partitioning Works the Best? ............ 33
   3.8  Case Study: Visapult ................................... 36
        3.8.1  Visapult Architecture: The Send-Geometry
               Partition ....................................... 37
        3.8.2  Visapult Architecture: The Send-Data Partition .. 38
   3.9  Case Study: Chromium Renderserver ...................... 39
   3.10 Case Study: Visit and Dynamic Pipeline
        Reconfiguration ........................................ 42
        3.10.1 How Visit Manages Pipeline Partitioning ......... 43
        3.10.2 Send-Geometry Partitioning ...................... 43
        3.10.3 Send-Images Partitioning ........................ 44
        3.10.4 Automatic Pipeline Partitioning Selection ....... 44
   3.11 Conclusion ............................................. 45

4  Rendering ................................................... 49
   Charles Hansen, E. Wes Bethel, Thiago Ize, and Carson
   Brownlee
   4.1  Introduction ........................................... 49
   4.2  Rendering Taxonomy ..................................... 50
   4.3  Rendering Geometry ..................................... 52
   4.4  Volume Rendering ....................................... 53
   4.5  Real-Time Ray Tracer for Visualization on a Cluster .... 56
        4.5.1  Load Balancing .................................. 57
        4.5.2  Display Process ................................. 58
        4.5.3  Distributed Cache Ray Tracing ................... 58
               4.5.3.1  DCBVH .................................. 59
               4.5.3.2  DC Primitives .......................... 60
        4.5.4  Results ......................................... 61
        4.5.5  Maximum Frame Rate .............................. 62
   4.6  Conclusion ............................................. 66

5  Parallel Image Compositing Methods .......................... 71
   Tom Peterka and Kwan-Liu Ma
   5.1  Introduction ........................................... 72
   5.2  Basic Concepts and Early Work in Compositing ........... 72
        5.2.1  Definition of Image Composition ................. 73
        5.2.2  Fundamental Image Composition Algorithms ........ 74
        5.2.3  Image Compositing Hardware ...................... 77
   5.3  Recent Advances ........................................ 77
        5.3.1  2-3 Swap ........................................ 77
        5.3.2  Radix-k ......................................... 78
        5.3.3  Optimizations ................................... 80
   5.4  Results ................................................ 81
   5.5  Discussion and Conclusion .............................. 82
        5.5.1  Conclusion ...................................... 83
        5.5.2  Directions for Future Research .................. 85

6  Parallel Integral Curves .................................... 91
   David Pugmire, Tom Peterka, and Christoph Garth
   6.1  Introduction ........................................... 92
   6.2  Challenges to Parallelization .......................... 94
        6.2.1  Problem Classification .......................... 94
   6.3  Approaches to Parallelization .......................... 95
        6.3.1  Test Data ....................................... 96
        6.3.2  Parallelization Over Seed Points ................ 98
        6.3.3  Parallelization Over Data ....................... 99
        6.3.4  A Hybrid Approach to Parallelization ............ 99
        6.3.5  Algorithm Analysis ............................. 103
        6.3.6  Hybrid Data Structure and Communication
               Algorithm ...................................... 106
   6.4  Conclusion ............................................ 111

II Advanced Processing Techniques ............................. 115

7  Query-Driven Visualization and Analysis .................... 117
   Oliver Rübel, E. Wes Bethel, Prabhat, and Kesheng Wu
   7.1  Introduction .......................................... 118
   7.2  Data Subsetting and Performance ....................... 119
        7.2.1  Bitmap Indexing ................................ 120
        7.2.2  Data Interfaces ................................ 122
   7.3  Formulating Multivariate Queries ...................... 124
        7.3.1  Parallel Coordinates Multivariate Query
               Interface ...................................... 125
        7.3.2  Segmenting Query Results ....................... 127
   7.4  Applications of Query-Driven Visualization ............ 129
        7.4.1  Applications in Forensic Cybersecurity ......... 129
        7.4.2  Applications in High Energy Physics ............ 132
               7.4.2.1  Linear Particle Accelerator ........... 133
               7.4.2.2  Laser Plasma Particle Accelerator ..... 135

8  Progressive Data Access for Regular Grids .................. 145
   John Clyne
   8.1  Introduction .......................................... 146
   8.2  Preliminaries ......................................... 146
   8.3  Z-Order Curves ........................................ 147
        8.3.1  Constructing the Curve ......................... 149
   7.5  Conclusion ............................................ 139
        8.3.2  Progressive Access ............................. 149
   8.4  Wavelets .............................................. 151
        8.4.1  Linear Decomposition ........................... 153
        8.4.2  Scaling and Wavelet Functions .................. 154
        8.4.3  Wavelets and Filter Banks ...................... 156
        8.4.4  Compression .................................... 158
        8.4.5  Boundary Handling .............................. 159
        8.4.6  Multiple Dimensions ............................ 164
        8.4.7  Implementation Considerations .................. 164
               8.4.7.1  Blocking .............................. 165
               8.4.7.2  Wavelet Choice ........................ 165
               8.4.7.3  Coefficient Addressing ................ 166
        8.4.8  A Hybrid Approach .............................. 166
        8.4.9  Volume Rendering Example ....................... 167
   8.5  Further Reading ....................................... 167

9  In Situ Processing ......................................... 171
   Hank Chilis, Kwan-Liu Ma, Hongfeng Yu, Brad Whitlock,
   Jeremy Meredith, Jean Favre, Scott Klasky, Norbert
   Podhorszki, Karsten Schwan, Matthew Wolf, Manish
   Parashar, and Fan Zhang
   9.1  Introduction .......................................... 172
   9.2  Tailored Co-Processing at High Concurrency ............ 174
   9.3  Co-Processing With General Visualization Tools Via
        Adaptors .............................................. 175
        9.3.1  Adaptor Design ................................. 178
        9.3.2  High Level Implementation Issues ............... 178
        9.3.3  In Practice .................................... 179
        9.3.4  Co-Processing Performance ...................... 181
   9.4  Concurrent Processing ................................. 183
        9.4.1  Service Oriented Architecture for Data
               Management in HPC .............................. 183
        9.4.2  The ADaptable I/O System, ADIOS ................ 184
        9.4.3  Data Staging for In Situ Processing ............ 185
        9.4.4  Exploratory Visualization with Visit and
               Paraview Using ADIOS ........................... 186
   9.5  In Situ Analytics Using Hybrid Staging ................ 187
   9.6  Data Exploration and In Situ Processing ............... 190
        9.6.1  In Situ Visualization by Proxy ................. 190
        9.6.2  In Situ Data Triage ............................ 191
   9.7  Conclusion ............................................ 193

10 Streaming and Out-of-Core Methods .......................... 199
   David E. DeMarle, Berk Geveci, Jon Woodring, and Jim
   Ahrens
   10.1 External Memory Algorithms ............................ 200
   10.2 Taxonomy of Streamed Visualization .................... 202
   10.3 Streamed Visualization Concepts ....................... 204
        10.3.1 Data Structures ................................ 204
        10.3.2 Repetition ..................................... 205
        10.3.3 Algorithms ..................................... 205
        10.3.4 Sparse Traversal ............................... 207
   10.4 Survey of Current State of the Art .................... 209
        10.4.1 Rendering ...................................... 209
        10.4.2 Streamed Processing of Unstructured Data ....... 210
        10.4.3 General Purpose Systems ........................ 211
        10.4.4 Asynchronous Systems ........................... 212
        10.4.5 Lazy Evaluation ................................ 214
   10.5 Conclusion ............................................ 215


III   Advanced Architectural Challenges and Solutions ......... 221


11 GPU-Accelerated Visualization .............................. 223
   Marco Ament, Steffen Frey, Christoph Miiller, Sebastian
   Grottel, Thomas Ertl, and Daniel Weiskopf
   11.1 Introduction .......................................... 224
   11.2 Programmable Graphics Hardware ........................ 225
        11.2.1 High-Level Shader Languages .................... 226
        11.2.2 General Purpose Computing on GPUs .............. 227
        11.2.3 GPGPU Programming Languages .................... 228
   11.3 GPU-Accelerated Volume Rendering ...................... 229
        11.3.1 Basic GPU Techniques ........................... 229
               11.3.1.1 2D Texture-Based Rendering ............ 229
               11.3.1.2 3D Texture-Based Rendering ............ 230
               11.3.1.3 Ray Casting ........................... 231
        11.3.2 Advanced GPU Algorithms ........................ 231
        11.3.3 Scalable Volume Rendering on GPU-Clusters ...... 233
               11.3.3.1 Sort-Last Volume Rendering ............ 233
               11.3.3.2 Sort-First Volume Rendering ........... 234
   11.4 Particle-Based Rendering .............................. 235
        11.4.1 GPU-Based Glyph Rendering ...................... 236
        11.4.2 Large Molecular Dynamics Visualization ......... 238
        11.4.3 Iterative Surface Ray Casting .................. 239
   11.5 GPGPU High Performance Environments ................... 240
        11.5.1 New Challenges in GPGPU Environments ........... 240
        11.5.2 Distributed GPU Computing ...................... 241
        11.5.3 Distributed Heterogeneous Computing ............ 242
   11.6 Large Display Visualization ........................... 243
        11.6.1 Flat Panel-Based Systems ....................... 243
        11.6.2 Projection-Based Systems ....................... 244
        11.6.3 Rendering for Large Displays ................... 246

12 Hybrid Parallelism ......................................... 261
   E. Wes Bethel, David Camp, Hank Childs, Christoph Garth,
   Mark Howison, Kenneth I. Joy, and David Pugmire
   12.1 Introduction .......................................... 262
   12.2 Hybrid Parallelism and Volume Rendering ............... 264
        12.2.1 Background and Previous Work ................... 264
        12.2.2 Implementation ................................. 265
               12.2.2.1 Shared-Memory Parallel Ray Casting .... 266
               12.2.2.2 Parallel Compositing .................. 266
        12.2.3 Experiment Methodology ......................... 267
        12.2.4 Results ........................................ 268
               12.2.4.1 Initialization ........................ 268
               12.2.4.2 Ghost Data/Halo Exchange .............. 269
               12.2.4.3 Ray Casting ........................... 269
               12.2.4.4 Compositing ........................... 272
               12.2.4.5 Overall Performance ................... 272
   12.3 Hybrid Parallelism and Integral Curve Calculation ..... 275
        12.3.1 Background and Context ......................... 275
        12.3.2 Design and Implementation ...................... 276
               12.3.2.1 Parallelize Over Seeds ................ 276
               12.3.2.2 Parallelize Over Blocks ............... 277
        12.3.3 Experiment Methodology ......................... 278
               12.3.3.1 Factors Influencing Parallelization
                        Strategy .............................. 278
               12.3.3.2 Test Cases ............................ 279
               12.3.3.3 Runtime Environment ................... 279
               12.3.3.4 Measurements .......................... 280
        12.3.4 Results ........................................ 280
               12.3.4.1 Parallelization Over Seeds ............ 280
               12.3.4.2 Parallelization Over Blocks ........... 282
   12.4 Conclusion and Future Work ............................ 283

13 Visualization at Extreme Scale Concurrency ................. 291
   Hank Childs, David Pugmire, Sean Ahem, Brad Whitlock,
   Mark Howison, Prabhat, Gunther Weber, and E. Wes Bethel
   13.1 Overview - Pure Parallelism ........................... 292
   13.2 Massive Data Experiments .............................. 293
        13.2.1 Varying over Supercomputing Environment ........ 296
        13.2.2 Varying over I/O Pattern ....................... 297
        13.2.3 Varying over Data Generation ................... 298
   13.3 Scaling Experiments ................................... 299
        13.3.1 Study Overview ................................. 299
        13.3.2 Results ........................................ 300
   13.4 Pitfalls at Scale ..................................... 301
        13.4.1 Volume Rendering ............................... 301
        13.4.2 All-to-One Communication ....................... 303
        13.4.3 Shared Libraries and Start-up Time ............. 304
   13.5 Conclusion ............................................ 305

14 Performance Optimization and Auto-Tuning ................... 307
   E. Wes Bethel and Mark Howison
   14.1 Introduction .......................................... 308
   14.2 Optimizing Performance of a 3D Stencil Operator on
        the GPU ............................................... 310
        14.2.1 Introduction and Related Work .................. 310
        14.2.2 Design and Methodology ......................... 312
        14.2.3 Results ........................................ 313
               14.2.3.1 Algorithmic Design Option: Width-,
                        Height-, and Depth-Row Kernels ........ 313
               14.2.3.2 Device-Specific Feature: Constant
                        Versus Global Memory for Filter
                        Weights ............................... 314
               14.2.3.3 Tunable Algorithmic Parameter:
                        Thread Block Size ..................... 314
        14.2.4 Lessons Learned ................................ 317
   14.3 Optimizing Ray Casting Volume Rendering on
        Multi-Core GPUs and Many-Core GPUs .................... 317
        14.3.1 Introduction and Related Work .................. 317
        14.3.2 Design and Methodology ......................... 319
        14.3.3 Results ........................................ 320
               14.3.3.1 Tunable Parameter: Image Tile
                        Size/CUDA Block Size .................. 320
               14.3.3.2 Algorithmic Optimization: Early Ray
                        Termination ........................... 323
               14.3.3.3 Algorithmic Optimization: Z-Ordered
                        Memory ................................ 324
        14.3.4 Lessons Learned ................................ 325
   14.4 Conclusion ............................................ 326

15 The Path to Exascale ....................................... 331
   Sean Ahern
   15.1 Introduction .......................................... 332
   15.2 Future System Architectures ........................... 332
   15.3 Science Understanding Needs at the Exascale ........... 335
   15.4 Research Directions ................................... 338
        15.4.1 Data Processing Modes .......................... 338
               15.4.1.1 In Situ Processing .................... 338
               15.4.1.2 Post-Processing Data Analysis ......... 339
        15.4.2 Visualization and Analysis Methods ............. 341
               15.4.2.1 Support for Data Processing Modes ..... 341
               15.4.2.2 Topological Methods ................... 342
               15.4.2.3 Statistical Methods ................... 343
               15.4.2.4 Adapting to Increased Data
                        Complexity ............................ 343
        15.4.3 I/O and Storage Systems ........................ 344
               15.4.3.1 Storage Technologies for the
                        Exascale .............................. 345
               15.4.3.2 I/O Middleware Platforms .............. 346
   15.5 Conclusion and the Path Forward ....................... 347

IV  High Performance  Visualization Implementations ........... 355

16 Visit: An End-User Tool for Visualizing and Analyzing
   Very Large Data ............................................ 357
   Hank Childs, Eric Brugger, Brad Whitlock, Jeremy
   Meredith, Sean Ahern, David Pugmire, Kathleen Biagas,
   Mark Miller, Cyrus Harrison, Gunther H. Weber, Hari
   Krishnan, Thomas Fogal, Allen Sanderson, Christoph
   Garth, E. Wes Bethel, David Camp, Oliver Rübel, and
   Marc Durant, Jean M. Favre, Paul Navrátil
   16.1 Introduction .......................................... 358
   16.2 Focal Points .......................................... 359
        16.2.1 Enable Data Understanding ...................... 359
        16.2.2 Support for Large Data ......................... 360
        16.2.3 Provide a Robust and Usable Product for End
               Users .......................................... 360
   16.3 Design ................................................ 361
        16.3.1 Architecture ................................... 361
        16.3.2 Parallelism .................................... 362
        16.3.3 User Interface Concepts and Extensibility ...... 363
        16.3.4 The Size and Breadth of Visit .................. 364
   16.4 Successes ............................................. 364
        16.4.1 Scalability Successes .......................... 365
        16.4.2 A Repository for Large Data Algorithms ......... 365
        16.4.3 Supercomputing Research Performed with Visit ... 366
        16.4.4 User Successes ................................. 366
   16.5 Future Challenges ..................................... 368
   16.6 Conclusion ............................................ 368

17 IceT ....................................................... 373
   Kenneth Moreland
   17.1 Introduction .......................................... 373
   17.2 Motivation ............................................ 374
   17.3 Implementation ........................................ 374
        17.3.1 Theoretical Limitations ... and How to Break
               Them ........................................... 375
        17.3.2 Pixel Reduction Techniques ..................... 376
        17.3.3 Tricks to Boost the Frame Rate ................. 377
   17.4 Application Programming Interface ..................... 378
        17.4.1 Image Generation ............................... 378
        17.4.2 Opaque versus Transparent Rendering ............ 379
   17.5 Conclusion ............................................ 379

18 The ParaView Visualization Application ..................... 383
   Utkarsh Ayachit, Berk Geveci, Kenneth Moreland, and John
   Patchett, Jim Ahrens
   18.1 Introduction .......................................... 384
   18.2 Understanding the Need ................................ 384
   18.3 The ParaView Framework ................................ 386
   18.3.1 Configurations ...................................... 387
   18.4 Parallel Data Processing .............................. 387
   18.5 The ParaView Application .............................. 390
        18.5.1 Graphical User Interface ....................... 390
        18.5.2 Scripting with Python .......................... 391
   18.6 Customizing with Plug-ins and Custom Applications ..... 391
   18.7 Co-Processing: In Situ Visualization and Data
        Analysis .............................................. 392
   18.8 ParaViewWeb: Interactive Visualization for the Web .... 393
   18.9 ParaView In Use ....................................... 394
        18.9.1 Identifying and Validating Fragmentation in
               Shock Physics Simulation ....................... 394
        18.9.2 ParaView at the Los Alamos National
               Laboratory ..................................... 396
        18.9.3 Analyzing Simulations of the Earth's
               Magnetosphere .................................. 397
   18.10 Conclusion ........................................... 398

19 The ViSUS Visualization Framework .......................... 401
   Valerio Pascucci, Giorgio Scorzelli, Brian Summa,
   Peer-Timo Bremer, Attila Gyulassy, Cameron Christensen,
   Sujin Philip, and Sidharth Kumar
   19.1 Introduction .......................................... 402
   19.2 ViSUS Software Architecture ........................... 402
   19.3 Applications .......................................... 408

20 The VAPOR Visualization Application ........................ 415
   Alan Norton and John Clyne
   20.1 Introduction .......................................... 415
        20.1.1 Features ....................................... 416
        20.1.2 Limitations .................................... 417
   20.2 Progressive Data Access ............................... 417
        20.2.1 VAPOR Data Collection .......................... 418
        20.2.2 Multiresolution ................................ 419
   20.3 Visualization-Guided Analysis ......................... 420
   20.4 Progressive Access Examination ........................ 422
        20.4.1 Discussion ..................................... 423
   20.5 Conclusion ............................................ 424

21 The EnSight Visualization Application ...................... 429
   Randall Frank and Michael F. Krogh
   21A Introduction ........................................... 429
   21.2 EnSight Architectural Overview ........................ 430
   21.3 Cluster Abstraction: CEIShell ......................... 432
        21.3.1 Virtual Clustering Via CEIShell Roles .......... 433
        21.3.2 Application Invocation ......................... 434
        21.3.3 CEIShell Extensibility ......................... 434
   21.4 Advanced Rendering .................................... 435
        21.4.1 Customized Fragment Rendering .................. 435
        21.4.2 Image Composition System ....................... 438
   21.5 Conclusion ............................................ 440

Index ......................................................... 443


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:50 2019. Размер: 30,043 bytes.
Посещение N 1304 c 12.11.2013