Preface to the second edition ............................. xiii
Preface to the first edition ................................ xv
Notation .................................................. xvii
1 Important historical experiments ............................. 1
1.1 The birth of the neutrino ............................... 1
1.2 Nuclear recoil experiment by Rodeback and Allen ......... 3
1.3 Discovery of the neutrino by Cowan and Reines ........... 4
1.4 Difference between ve and νc and solar νc
neutrino detection ...................................... 5
1.5 Discovery of parity violation in weak interactions ...... 7
1.6 Direct measurement of the helicity of the neutrino ..... 10
1.7 Experimental proof that νμ is different from ν℮ ........ 11
1.8 Discovery of weak neutral currents ..................... 12
1.9 Discovery of the weak gauge bosons W and Z ............. 14
1.10 Observation of neutrinos from SN 1987A ................. 15
1.11 Number of neutrino flavors from the width of the Z0 .... 15
2 Properties of neutrinos ..................................... 19
2.1 Helicity and chirality ................................. 19
2.2 Charge conjugation ..................................... 22
2.3 Parity transformation .................................. 23
2.4 Dirac and Majorana mass terms .......................... 24
2.4.1 Generalization to n flavors ..................... 28
2.5 Lepton number .......................................... 29
2.5.1 Experimental status of lepton number violation .. 30
3 The standard model of particle physics ...................... 33
3.1 The V-A theory of the weak interaction ................. 33
3.2 Gauge theories ......................................... 35
3.2.1 The gauge principle ............................. 36
3.2.2 Global symmetries ............................... 38
3.2.3 Local (= gauge) symmetries ...................... 39
3.2.4 Non-Abelian gauge theories (= Yang-Mills
theories) ....................................... 40
3.3 The Glashow-Weinberg-Salam model ....................... 41
3.3.1 Spontaneous symmetry breaking and the Higgs
mechanism ....................................... 44
3.3.2 The CKM mass matrix ............................. 47
3.3.3 CP violation .................................... 50
3.4 Experimental determination of fundamental parameters ... 51
3.4.1 Measurement of the Fermi constant Gf ............ 52
3.4.2 Neutrino-electron scattering and the coupling
constants gν and gA ............................. 53
3.4.2.1 Theoretical considerations ............. 53
3.4.2.2 νμ℮ scattering ......................... 55
3.4.2.3 νμ℮ and νμ℮ scattering ................. 55
3.4.2.4 Neutrino tridents ...................... 58
3.4.3 Measurement of the Weinberg angle ............... 58
3.4.4 Measurement of the gauge boson masses mw and
mz .............................................. 60
3.4.5 Search for the Higgs boson ...................... 62
4 Neutrinos as a probe of nuclear structure ................... 65
4.1 Neutrino beams ......................................... 65
4.1.1 Conventional beams .............................. 65
4.1.1.1 Narrow-band beams (NBВ) ................ 67
4.1.1.2 Wide-band beams (WBB) .................. 69
4.1.2 ντ beams ........................................ 70
4.1.3 Neutrino beams from muon decay .................. 70
4.2 Neutrino detectors ..................................... 71
4.2.1 CDHS ............................................ 71
4.2.2 NOMAD ........................................... 72
4.2.3 CHORUS .......................................... 72
4.3 Total cross section for neutrino-nucleon scattering .... 74
4.4 Kinematics of deep inelastic scattering ................ 76
4.5 Quasi-elastic neutrino-nucleon scattering .............. 78
4.5.1 Quasi-elastic CC reactions ...................... 79
4.5.2 Quasi-elastic NC reactions ...................... 80
4.6 Coherent, resonant and diffractive production .......... 82
4.7 Structure function of nucleons ......................... 84
4.8 The quark-parton model, parton distribution functions .. 85
4.8.1 Deep inelastic neutrino proton scattering ....... 87
4.8.1.1 QCD effects ............................ 90
4.9 y distributions and quark content from total cross
sections ............................................... 91
4.9.1 Sum rules ....................................... 93
4.10 Charm physics .......................................... 96
4.11 Neutral current reactions .............................. 99
4.12 Neutrino cross section on nuclei ...................... 101
5 Neutrino masses and physics beyond the standard model ...... 105
5.1 Running coupling constants ............................ 106
5.2 The minimal SU(5) model ............................... 107
5.2.1 Proton decay ................................... 110
5.3 The SO(10) model ...................................... 111
5.3.1 Left-right symmetric models .................... 111
5.4 Supersymmetry ......................................... 114
5.4.1 The minimal supersymmetric standard model
(MSSM) ......................................... 115
5.4.2 R-parity ....................................... 116
5.4.3 Experimental search for supersymmetry .......... 117
5.4.3.1 SUSY signatures at high energy
colliders ............................. 119
5.4.3.2 SUSY GUTs and proton decay ............ 119
5.5 Neutrino masses ....................................... 120
5.5.1 Neutrino masses in the electroweak theory ...... 121
5.5.2 Neutrino masses in the minimal SU(5) model ..... 122
5.5.3 Neutrino masses in the SO(10) model and the
seesaw mechanism ............................... 122
5.5.3.1 Almost degenerated neutrino masses .... 123
5.5.4 Neutrino masses in SUSY and beyond ............. 123
5.6 Neutrino mixing ....................................... 123
6 Direct neutrino mass searches .............................. 127
6.1 Fundamentals of β-decay ............................... 127
6.1.1 Matrix elements ................................ 129
6.1.2 Phase space calculation ........................ 132
6.1.3 Kurie plot and ft values ....................... 133
6.2 Searches for mν℮ ...................................... 136
6.2.1 General considerations ......................... 136
6.2.2 Searches using spectrometers ................... 137
6.2.2.1 Future spectrometers - К ATRIN ........ 139
6.2.3 Cryogenic searches ............................. 140
6.2.4 Kinks in β-decay ............................... 142
6.3 Searches for mν℮ ...................................... 145
6.4 mνμ determination from pion decay ..................... 146
6.5 Mass of the ντ from tau decay ......................... 146
6.6 Electromagnetic properties of neutrinos ............... 147
6.6.1 Electric dipole moments ........................ 149
6.6.2 Magnetic dipole moments ........................ 149
6.7 Neutrino decay ........................................ 152
6.7.1 Radiative decay νH → νL + γ .................... 153
6.7.2 The decay νH → νL + ℮+ + ℮- .................... 154
6.7.3 The decay νH → νL + χ .......................... 155
7 Double β-decay ............................................. 157
7.1 Introduction .......................................... 157
7.2 Decay rates ........................................... 162
7.2.1 The 2νββ decay rates ........................... 162
7.2.2 The 0νββ decay rates ........................... 165
7.2.3 Majoron accompanied double β-decay ............. 167
7.3 Nuclear structure effects on matrix elements .......... 168
7.4 Experiments ........................................... 170
7.4.1 Practical considerations in low-level
counting ....................................... 173
7.4.2 Direct counting experiments .................... 175
7.4.2.1 Semiconductor experiments ............. 175
7.4.2.2 Scintillator experiments .............. 177
7.4.2.3 Cryogenic detectors ................... 178
7.4.2.4 Ionization experiments ................ 178
7.4.3 Geochemical experiments ........................ 179
7.4.4 Radiochemical experiments ...................... 181
7.5 Interpretation of the obtained results ................ 181
7.5.1 Effects of MeV neutrinos ....................... 183
7.5.2 Transitions to excited states .................. 184
7.5.3 Majoron accompanied decays ..................... 184
7.5.4 Decay rates for SUSY-induced 0νββ decay ........ 184
7.6 Future plans and activities ........................... 186
7.7 β+β+ decay ............................................ 186
7.8 CP phases and double β decay .......................... 187
7.9 Generalization to three flavors ....................... 188
7.9.1 General considerations ......................... 188
7.9.1.1 Muon-positron conversion on nuclei .... 189
7.9.1.2 Processes investigating (mμμ) ......... 189
7.9.1.3 Limits on (mττ) from CC events at
HERA .................................. 191
8 Neutrino oscillations ...................................... 193
8.1 General formalism ..................................... 193
8.2 CP and T violation in neutrino oscillations ........... 196
8.3 Oscillations with two neutrino flavors ................ 197
8.4 The case for three flavors ............................ 199
8.5 Experimental considerations ........................... 200
8.6 Nuclear reactor experiments ........................... 201
8.6.1 Experimental status ............................ 203
8.6.1.1 CHOOZ ................................. 203
8.6.1.2 Palo Verde ............................ 204
8.6.1.3 KamLAND ............................... 207
8.6.2 Geoneutrinos ................................... 209
8.6.3 Future ......................................... 210
8.6.3.1 Borexino .............................. 210
8.6.3.2 SNO+ .................................. 211
8.6.3.3 Measuring θ13 at reactors ............. 211
8.7 Accelerator-based oscillation experiments ............. 212
8.7.1 LSND ........................................... 212
8.7.2 KARMEN ......................................... 213
8.7.3 MiniBooNE ...................................... 215
8.8 Searches at higher neutrino energy .................... 216
8.8.1 CHORUS and NOMAD ............................... 217
8.9 Neutrino oscillations in matter ....................... 220
8.10 Future activities - Determination of the PMNS matrix
elements .............................................. 223
8.11 Possible future beams ................................. 224
8.11.1 Off-axis superbeams ............................ 224
8.11.2 Beta beams ..................................... 226
8.11.3 Muon storage rings - neutrino factories ........ 226
9 Atmospheric neutrinos ...................................... 229
9.1 Cosmic rays ........................................... 229
9.2 Interactions within the atmosphere .................... 231
9.3 Experimental status ................................... 236
9.3.1 Super-Kamiokande ............................... 236
9.3.1.1 The νμ/ν℮ ratio ....................... 238
9.3.1.2 Zenith-angle distributions ............ 241
9.3.1.3 Oscillation analysis .................. 242
9.3.2 Soudan-2 ....................................... 246
9.3.3 MACRO .......................................... 246
9.4 Accelerator-based searches—long-baseline experiments .. 248
9.4.1 K2K ............................................ 249
9.4.2 MINOS .......................................... 250
9.4.3 CERN-Gran Sasso ................................ 251
9.4.4 INO-ICAL ....................................... 254
9.4.5 Very large water Cerenkov detectors ............ 255
9.4.6 AQUA-RICH ...................................... 255
10 Solar neutrinos ............................................ 257
10.1 The standard solar model .............................. 257
10.1.1 Energy production processes in the Sun ......... 257
10.1.2 Reaction rates ................................. 260
10.1.3 The solar neutrino spectrum .................... 262
10.1.3.1 Standard solar models ................. 263
10.1.3.2 Diffusion ............................. 264
10.1.3.3 Initial composition ................... 265
10.1.3.4 Opacity and equation of state ......... 265
10.1.3.5 Predicted neutrino fluxes ............. 266
10.2 Solar neutrino experiments ............................ 268
10.2.1 The chlorine experiment ........................ 270
10.2.2 Super-Kamiokande ............................... 270
10.2.3 The gallium experiments ........................ 272
10.2.3.1 GALLEX ................................ 273
10.2.3.2 GNO ................................... 273
10.2.3.3 SAGE .................................. 274
10.2.4 The Sudbury Neutrino Observatory (SNO) ......... 275
10.2.5 The Borexino experiment ........................ 278
10.3 Theoretical solutions—matter effects .................. 279
10.3.1 Neutrino oscillations as a solution to the
solar neutrino problem ......................... 279
10.3.2 Neutrino oscillations in matter and the MSW
effect ......................................... 279
10.3.2.1 Constant density of electrons ......... 282
10.3.2.2 Variable electron density ............. 284
10.3.3 Experimental signatures and results ............ 285
10.3.4 The magnetic moment of the neutrino ............ 290
10.4 Future potential experiments .......................... 292
10.4.1 Real-time measurement of pp neutrinos using
coincidence techniques ......................... 294
11 Neutrinos from supernovae .................................. 297
11.1 Supernovae ............................................ 297
11.1.1 The evolution of massive stars ................. 298
11.1.2 The actual collapse phase ...................... 301
11.2 Neutrino emission in supernova explosions ............. 306
11.3 Detection methods for supernova neutrinos ............. 308
11.4 Supernova 1987A ....................................... 309
11.4.1 Characteristics of supernova 1987A ............. 309
11.4.1.1 Properties of the progenitor star
and the event ......................... 309
11.4.1.2 γ-radiation ........................... 310
11.4.1.3 Distance .............................. 313
11.4.1.4 Summary ............................... 314
11.4.2 Neutrinos from SN 1987A ........................ 314
11.4.2.1 Possible anomalies .................... 316
11.4.3 Neutrino properties from SN 1987A .............. 316
11.4.3.1 Lifetime .............................. 316
11.4.3.2 Mass .................................. 318
11.4.3.3 Magnetic moment and electric charge ... 319
11.4.3.4 Conclusion ............................ 320
11.5 Supernova rates and future experiments ................ 321
11.5.1 Cosmic supernova relic neutrino background ..... 322
11.6 Neutrino oscillations and supernova signals ........... 322
11.6.1 Effects on the prompt ve burst ................. 323
11.6.2 Cooling phase neutrinos ........................ 324
11.6.3 Production of r-process isotopes ............... 324
11.6.4 Neutrino mass hierarchies from supernova
signals ........................................ 326
11.6.5 Resonant spin flavor precession in supernovae .. 329
12 Ultra-high energetic cosmic neutrinos ...................... 331
12.1 Sources of high-energy cosmic neutrinos ............... 331
12.1.1 Neutrinos produced in acceleration processes ... 332
12.1.2 Neutrinos produced in annihilation or decay
of heavy particles ............................. 337
12.1.3 Event rates .................................... 337
12.1.4 Neutrinos from active galactic nuclei .......... 338
12.1.5 Neutrinos from gamma ray bursters .............. 340
12.1.6 Cross sections ................................. 343
12.2 Detection ............................................. 347
12.2.1 Water Cerenkov detectors ....................... 353
12.2.1.1 Baikal NT-200 ......................... 353
12.2.1.2 NESTOR ................................ 356
12.2.1.3 ANTARES ............................... 359
12.2.2 Ice Cerenkov detectors - AMANDA, ICECUBE ....... 360
12.2.3 Alternative techniques - acoustic and radio
detection ...................................... 360
12.2.4 Horizontal air showers - the AUGER experiment .. 361
13 Neutrinos in cosmology ..................................... 365
13.1 Cosmological models ................................... 366
13.1.1 The cosmological constant ...................... 369
13.1.2 The inflationary phase ......................... 372
13.1.3 The density in the universe .................... 372
13.2 The evolution of the universe ......................... 374
13.2.1 The standard model of cosmology ................ 374
13.3 The cosmic microwave background (CMB) ................. 380
13.3.1 Spectrum and temperature ....................... 380
13.3.2 Measurement of the spectral form and
temperature of the CMB ......................... 381
13.3.3 Anisotropics in the 3К radiation ............... 381
13.3.3.1 Measurement of the anisotropy ......... 382
13.3.3.2 Anisotropics on small scales .......... 383
13.4 Neutrinos as dark matter .............................. 385
13.5 Candidates for dark matter ............................ 386
13.5.1 Non-baryonic dark matter ....................... 386
13.5.1.1 Hot dark matter, light neutrinos ...... 387
13.5.1.2 Cold dark matter, heavy particles,
WIMPs ................................. 388
13.5.2 Direct and indirect experiments ................ 389
13.5.2.1 Annihilation inside the Sun or
Earth ................................. 389
13.6 Neutrinos and large-scale structure ................... 390
13.7 The cosmic neutrino background ........................ 393
13.8 Primordial nucleosynthesis ............................ 394
13.8.1 The process of nucleosynthesis ................. 395
13.8.2 The relativistic degrees of freedom geff and
the number of neutrino flavors ................. 397
13.9 Baryogenesis via leptogenesis ......................... 399
13.9.1 Leptogenesis ................................... 400
14 Summary and outlook ........................................ 405
References ................................................. 411
Index ...................................................... 443
|