Rapidly evolving genes and genetic systems (Oxford, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRapidly evolving genes and genetic systems / ed. by R.S.Singh, J.Xu, R.J.Kulathinal. - Oxford: Oxford University Press, 2012. - xix, 288 p.: ill., map. - Incl. bibl. ref. - Ind.: p.285-288. - ISBN 978-0-19-964227-4
 

Место хранения: 021 | Институт цитологии и генетики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Foreword ...................................................... xiv
Richard Lewontin
Preface ....................................................... xvi
List of Contributors ......................................... xvii

1  Introduction ................................................. 1
   Rama S. Singh, Jianping Xu, and Rob J. Kulathinal
   1.1  A gradualist history .................................... 1
   1.2  Mechanisms of rapid and episodic change ................. 2
        1.2.1  Unconstrained neutral space ...................... 2
        1.2.2  Horizontal gene transfer ......................... 3
        1.2.3  Developmental macromutations ..................... 3
        1.2.4  Evolution by gene regulation ..................... 3
        1.2.5  Coevolutionary forces ............................ 4
        1.2.6  Sexual selection and sexual arms races ........... 4
        1.2.7  Population demography and genetic revolutions .... 5
        1.2.8  Adaptive radiation ............................... 5
   1.3  Punctuated equilibrium within a microevolution
        framework ............................................... 5
   1.4  Tempo, mode, and the genomic landscape .................. 6
   1.5  'Rapidly evolving genes and genetic systems': a brief
        overview ................................................ 7
   1.6  Future prospects ........................................ 8

Part I  From Theory to Experiment

2  Theoretical perspectives on rapid evolutionary change ....... 13
   Sarah P. Otto
   2.1  Introduction ........................................... 13
   2.2  When is strong selection strong? ....................... 13
   2.3  Does strong selection differ in kind from weak
        selection? ............................................. 16
   2.4  Concluding thoughts .................................... 20

3  Recombination reshuffles the genotypic deck, thus
   accelerating the rate of evolution .......................... 23
   Mihai Albu, Amir R. Kermany, and Donal A. Hickey
   3.1  Introduction ........................................... 23
   3.2  Simulating selection on multilocus genotypes ........... 24
   3.3  Discussion ............................................. 27
   3.4  Conclusions ............................................ 29

4  Heterogeneity in neutral divergence across genomic regions
   induced by sex-specific hybrid incompatibility .............. 31
   Seiji Kumagai and Marcy K. Uyenoyama
   4.1  Introduction ........................................... 31
        4.1.1  Detecting incompatibility factors ............... 31
        4.1.2  Within-species polymorphisms for
               incompatibility factors with sex-limited
               transmission .................................... 31
   4.2  Genealogical migration rate ............................ 32
        4.2.1  Definition ...................................... 32
        4.2.2  Non-sex-specific incompatibility ................ 33
        4.2.3  Sex-specific incompatibility .................... 33
   4.3  Applications ........................................... 33
        4.3.1  Mitochondrial introgression ..................... 33
        4.3.2  Interpreting region-specific Fst ................ 35
   4.4  Conclusions ............................................ 37

5  Rapid evolution in experimental populations of major life
   forms ....................................................... 40
   Jianping Xu
   5.1  Introduction ........................................... 40
   5.2  Features of experimental evolution ..................... 41
   5.3  Types of experimental evolution ........................ 42
        5.3.1  Directional selection ........................... 42
        5.3.2  Adaptation ...................................... 42
        5.3.3  Mutation accumulation ........................... 42
   5.4  Rapid change and divergence among mutation
        accumulation population lines .......................... 43
        5.4.1  Microbial growth rate ........................... 43
        5.4.2  Other microbial traits .......................... 45
        5.4.3  Plants and animals .............................. 45
   5.5  Adaptation and directional selection experiments ....... 47
        5.5.1  Adaptation of E. coli populations ............... 47
        5.5.2  Adaptation of viral populations ................. 47
        5.5.3  Adaptation and directional selection in fruit
               flies ........................................... 48
        5.5.4  Adaptation in yeast ............................. 48
        5.5.5  Directional selection in mammals ................ 48
        5.5.6  Correlated changes between traits ............... 49
        5.5.7  Acquisition of novel phenotypes ................. 49
   5.6  Genomic analysis of experimental evolution
        populations ............................................ 50
   5.7  Conclusions and perspectives ........................... 50

Part II  Rapidly Evolving Genetic Elements

6  Rapid evolution of low complexity sequences and single
   amino acid repeats across eukaryotes ........................ 55
   Wilfried Haerty and G. Brian Golding
   6.1  Introduction ........................................... 55
   6.2  Rapid evolution of low complexity sequences ............ 55
        6.2.1  Mutational processes ............................ 56
   6.3  Rapid divergence of LCRs and their impact on
        surrounding sequences .................................. 57
        6.3.1  LCRs as indicators of regions of lowered
               purifying selective pressures ................... 57
        6.3.2  Mutagenic effect of LCRs ........................ 58
   6.4  Low complexity sequences under selection ............... 59
        6.4.1  Deleterious effects of LCR size variation ....... 59
        6.4.2  DNA composition ................................. 59
        6.4.3  LCR distribution ................................ 60
        6.4.4  Phenotypic effects of LCR size variation ........ 60
        6.4.5  Selection for low information content ........... 61
   6.5  Perspectives ........................................... 61

7  Fast rates of evolution in bacteria due to horizontal gene
   transfer .................................................... 64
   Weilong Hao
   7.1  Introduction ........................................... 64
   7.2  Quantifying horizontal gene transfer ................... 65
   7.3  Understanding the variation of gene gain and loss ...... 66
   7.4  Horizontal gene transfer in duplicated genes ........... 67
   7.5  Pseudogenization of horizontally transferred genes ..... 67
   7.6  Mobile sequences and gene movement ..................... 68
   7.7  Gene exchange goes fine-scale .......................... 69
   7.8  Conclusions ............................................ 69

8  Rapid evolution of animal mitochondrial DNA ................. 73
   Xuhua Xia
   8.1  Introduction ........................................... 73
   8.2  Mitochondrial replication, strand bias, and
        evolutionary rates ..................................... 74
   8.3  The change in genetic code and evolutionary rate ....... 77
   8.4  The change in tRNA genes and evolutionary rate ......... 79
   8.5  Conclusions ............................................ 81

9  Rapid evolution of centromeres and centromeric/kinetochore
   proteins .................................................... 83
   Kevin C. Roach, Benjamin D. Ross, and Harmit S. Malik
   9.1  Centromeres in'the fast lane' .......................... 83
   9.2  Rapidly evolving centromeric histones .................. 83
   9.3  Bewildering centromeric DNA complexity and evolution ... 85
   9.4  The 'centromere paradox': conflict, not coevolution .... 87
   9.5  Support for the centromere drive model ................. 89
   9.6  Taxonomic differences in susceptibility to centromere
        drive .................................................. 89
   9.7  Rapid evolution of other centromeric proteins .......... 90
   9.8  Centromere drive and postzygotic isolation between
        species ................................................ 91
   9.9  Future directions ...................................... 91

10 Rapid evolution via chimeric genes .......................... 94
   Rebekah L. Rogers and Daniel L. Hartl
   10.1 Introduction ........................................... 94
   10.2 Mechanisms of formation ................................ 94
   10.3 Selection .............................................. 96
   10.4 Genomic stability ...................................... 96
   10.5 Function ............................................... 97
   10.6 Non-coding DNA ......................................... 98
   10.7 Future directions ...................................... 99

11 Evolutionary interactions between sex chromosomes and
   autosomes .................................................. 101
   Manyuan Long, Maria D. Vibranovski, and Yong E. Zhang
   11.1 Introduction .......................................... 101
   11.2 Gene traffic between sex chromosome and autosomes ..... 102
        11.2.1 Gene traffic in Drosophila ..................... 102
        11.2.2 Gene traffic in mammals ........................ 103
        11.2.3 The cause and consequence of gene traffic ...... 104
   11.3 The generality of gene traffic out of the X in the
        genus Drosophila ...................................... 105
        11.3.1 Gene traffic in Drosophilidae and RNA-based
               and DNA-based duplication ...................... 105
        11.3.2 Independent tests of gene traffic .............. 105
   11.4 Mechanisms underlying gene traffic out of the X: the
        detection of meiotic sex chromosome inactivation ...... 107
        11.4.1 Evolutionary genetic models .................... 107
        11.4.2 Molecular mechanistic models ................... 107
   11.5 The X-recruitment of young male-biased genes and
        gene traffic out of the X chromosome .................. 108
        11.5.1 Age-dependence in Drosophila ................... 109
        11.5.2 Age-dependence in mammals ...................... 110
        11.5.3 The slow enrichment of X-linked female genes ... 110
   11.6 Concluding remarks .................................... 111

12 Evolutionary signatures in non-coding DNA .................. 115
   Dara G. Torgerson and Ryan D. Hernandez
   12.1 Introduction .......................................... 115
   12.2 Challenges to studying the evolution of non-coding
        DNA ................................................... 116
        12.2.1 Identifying functional non-coding DNA .......... 116
        12.2.2 Estimating the neutral evolutionary rate ....... 117
        12.2.3 Limitations of identifying rapid evolution in
               non-coding DNA ................................. 117
   12.3 Patterns of evolution in non-coding DNA ............... 117
        12.3.1 Selection in conserved non-coding sequences? ... 118
        12.3.2 Detecting selection in promoters and TFBSs ..... 120
        12.3.3 Emerging trends in microRNA binding sites ...... 121
        12.3.4 Coding versus non-coding ....................... 121
   12.4 Future prospects ...................................... 122

Part III Sex- and Reproduction-Related Genetic Systems

13 Evolution of sperm-egg interaction ......................... 127
   Melody R. Palmer and Willie J. Swanson
   13.1 Introduction .......................................... 127
   13.2 Evolution at each step of sperm-egg interaction ....... 127
   13.3 Causes of rapid evolution ............................. 130
   13.4 Methods to identify interacting proteins .............. 132
   13.5 Conclusions ........................................... 132

14 Rates of sea urchin bindin evolution ....................... 136
   H.A. Lessios and Kirk S. Zigler
   14.1 Introduction .......................................... 136
   14.2 Function and structure of bindin ...................... 136
   14.3 Rate of bindin evolution .............................. 137
   14.4 Possible reasons for different evolutionary rates in
        bindin ................................................ 139
   14.5 Conclusions and future prospects ...................... 141

15 Evolution of Drosophila seminal proteins and their
   networks ................................................... 144
   Alex Wong and Mariana F. Wolfner
   15.1 Introduction .......................................... 144
   15.2 Drosophila seminal fluid as a model system for
        rapidly evolving proteins ............................. 144
   15.3 Extensive variation in rates of SFP evolution ......... 147
   15.4 Selection on a network? ............................... 149
   15.5 Conclusions ........................................... 150

16 Evolutionary genomics of the sperm proteome ................ 153
   Timothy L. Karr and Steve Dorus
   16.1 Introduction .......................................... 153
   16.2 Characterization of the Drosophila sperm proteome ..... 154
   16.3 Molecular evolution of the Drosophila sperm proteome .. 154
   16.4 Evolution of novel Drosophila sperm components ........ 155
        16.4.1 Novel genes in the sperm proteome .............. 156
        16.4.2 Expansion and diversification of S-LAP gene
               family ......................................... 157
   16.5 The mouse sperm proteome: intensified selection on
        sperm membrane and acrosome genes ..................... 157
   16.6 Rapid evolution of immunity-related genes in
        mammalian sperm ....................................... 160
   16.7 Sexual selection and compartmentalized adaptation in
        reproductive genetic systems .......................... 161
   16.8 Future perspectives ................................... 162

17 Fast evolution of reproductive genes: when is selection
   sexual? .................................................... 165
   Alberto Civetta
   17.1 Introduction .......................................... 165
   17.2 What has been the role of selection during the
        evolution of male reproductive genes? ................. 167
   17.3 When is selection sexual? The phylogenetic approach ... 168
   17.4 Testing sexual selection in the era of genomes ........ 168
   17.5 The need for association studies and functional
        assays ................................................ 171
   17.6 Conclusions ........................................... 172

18 Rapid morphological, behavioral, and ecological evolution
   in Drosophila: comparisons between the endemic Hawaiian
   Drosophila and the cactophilic repleta species group ....... 176
   Patrick M. O'Grady and Therese Ann Markow
   18.1 Introduction .......................................... 176
        18.1.1 Ecological adaptations ......................... 177
        18.1.2 Morphological adaptations ...................... 177
        18.1.3 Behavioral adaptations ......................... 178
   18.2 Hawaiian Drosophila radiation ......................... 179
        18.2.1 Phylogenetic relationships ..................... 179
        18.2.2 Sexual adaptations to morphology and behavior .. 179
        18.2.3 Ecological adaptations to morphology and
               behavior ....................................... 179
   18.3 Cactophilic Drosophila radiation in the New World ..... 180
        18.3.1 Phylogenetic relationships ..................... 180
        18.3.2 Rapid evolution of ecological adaptations ...... 180
        18.3.3 Rapid evolution of behavioral traits ........... 182
   18.4 Conclusions: adaptive radiation versus adaptive
        infiltration .......................................... 183

19 Ancient yet fast: rapid evolution of mating genes and
   mating systems in fungi .................................... 187
   Timothy Y. James
   19.1 Introduction .......................................... 187
   19.2 Incompatibility systems in fungi ...................... 189
   19.3 Fungal reproductive proteins show evidence for
        positive and balancing selection ...................... 190
   19.4 Evidence for rapid evolution of fungal
        incompatibility genes and systems ..................... 193
        19.4.1 Sequence evolution ............................. 194
        19.4.2 Mating systems and loci ........................ 194
   19.5 Evidence for ancient alleles and mating systems ....... 196
   19.6 Conclusions ........................................... 198

Part IV  Pathogens and their Hosts

20 Rapid evolution of innate immune response genes ............ 203
   Brian P. Lazzaro and Andrew G. Clark
   20.1 The evolution of immunity ............................. 203
   20.2 Orthology and gene family evolution in antimicrobial
        immunity .............................................. 204
   20.3 Molecular evolution of the antimicrobial immune
        system ................................................ 205
   20.4 The evolution of defense against viruses and
        transposable elements ................................. 206
   20.5 Concluding remarks .................................... 208

21 Rapid evolution of the plague pathogen ..................... 211
   Ruifu Yang, Yujun Qui, and Dongsheng Zhou
   21.1 Introduction .......................................... 211
   21.2 Plasmid acquisition in Y. pest is ..................... 212
   21.3 The impact of phages on genome structure .............. 213
   21.4 Prophages in the Y. pestis genome ..................... 213
   21.5 CRISPRs diversity and the battle between phage and
        Y. pestis ............................................. 214
   21.6 Gene acquisition, loss, and inactivation .............. 216
   21.7 Rearrangements and copy number variants ............... 217
   21.8 Neutral versus adaptive evolution ..................... 219
   21.9 Conclusions ........................................... 220

22 Evolution of human erythrocyte-specific genes involved in
   malaria susceptibility ..................................... 223
   Wen-Ya Ко, Felicia Gomez, and Sarah A. Tishkoff
   22.1 Introduction .......................................... 223
   22.2 Adaptive evolution in erythrocyte-specific genes ...... 224
        22.2.1 Genetic variants causing erythrocytic
               structural, regulatory, or enzymatic
               deficiency: candidates for heterozygote
               advantage ...................................... 224
        22.2.2 Positive selection on erythrocyte-surface
               receptors ...................................... 226
   22.3 Evolutionary response of the human genome to malaria
        infection ............................................. 227
        22.3.1 Maintenance of deleterious mutations due to
               selective pressure of malaria .................. 227
        22.3.2 Effects of population substructure on genetic
               variation in malaria-endemic human
               populations .................................... 230
        22.3.3 Effects of gene conversion between homologous
               sequences on genetic variation at loci
               associated with malarial susceptibility ........ 232
   22.4 Future perspectives ................................... 232

Part V From Gene Expression to Development to Speciation

23 The rapid evolution of gene expression ..................... 237
   Carlo G. Artieri
   23.1 Introduction .......................................... 237
   23.2 One genome harbors many transcriptomes ................ 238
   23.3 Transcriptome divergence is complex ................... 239
   23.4 Factors affecting the rate of evolution of gene
        expression ............................................ 240
        23.4.1 Spatial heterogeneity .......................... 240
        23.4.2 Temporal heterogeneity ......................... 241
   23.5 Beyond comparisons of expression levels ............... 242
   23.6 Open questions and future directions .................. 243

24 Rate variation in the evolution of development:
   a phylogenetic perspective ................................. 246
   Artyom Kopp
   24.1 Introduction .......................................... 246
   24.2 Examples of rate variation in the evolution of
        development ........................................... 247
        24.2.1 Same clade, different pathways: evolution of
               vulval development in rhabditid nematodes ...... 247
        24.2.2 Same pathway, different clades: evolution of
               sex combs and pigmentation in Drosophila ....... 248
        24.2.3 Same clade, same pathway, different genes:
               evolution of embryonic development and sex
               determination in insects ....................... 251
   24.3 Technical and conceptual challenges to quantifying
        the evolution of development .......................... 252
   24.4 Future directions: the promise of phylogenetic
        approaches to the evolution of development ............ 253

25 Natural hybridization as a catalyst of rapid evolutionary
   change ..................................................... 256
   Michael L. Arnold, Jennafer A.P. Hamlin, Amanda N.
   Brothers, and Evangeline S. Ballerini
   25.1 Introduction .......................................... 256
   25.2 Adaptive trait introgression: when strange is really
        good .................................................. 256
        25.2.1 Adaptive trait transfer in Canis: wolves in
               dogs' clothing ................................. 257
        25.2.2 Adaptive trait origin in Saccharomyces
               cerevisiae: hybrids make the best wine ......... 258
   25.3 Hybrid speciation: when opposites attract ............. 259
        25.3.1 Homoploid hybrid speciation: hybrid
               butterflies (quickly) change their spots ....... 259
        25.3.2 Allopolyploid speciation: Tragopogon hybrid
               polyploids form again, and again, and again
               in less than 100 years ......................... 260
   25.4 Natural hybridization and adaptive radiations:
        hybrid speciation on steroids ......................... 261
        25.4.1 Hybridization and adaptive radiations of Lake
               Malawi cichlids: from hybrid swarm to 800
               species, in one lake? .......................... 261
        25.4.2 Hybridization and adaptive radiations in
               Alpine lake whitefish: Swiss fish diversify
               after the last big thaw ........................ 262
        25.4.3 Hybridization and adaptive radiations in
               Hawaiian silverswords: allopolyploids in an
               island paradise ................................ 263
   25.5 Conclusions and future prospects ...................... 264

26 Rapid evolution of pollinator-mediated plant reproductive
   isolation .................................................. 266
   Annika M. Мое, Wendy L. Clement, and George D. Weiblen
   26.1 Plant-insect diversification .......................... 266
   26.2 Pollination and reproductive isolation ................ 266
   26.3 Ficus versus Castilleae ............................... 267
   26.4 A pollinator-mediated model for fig speciation ........ 269
   26.5 Future directions: plant-pollinator interactions and
        rapid evolution ....................................... 271

27 Sexual system genomics and speciation ...................... 274
   Rob J. Kulathinal and Rama S. Singh
   27.1 In the beginning: Darwin and Wallace on sexual
        selection and speciation .............................. 274
   27.2 The Modern Synthesis and the development of
        speciation theory ..................................... 275
   27.3 A new paradigm: the genomics of sexual systems and
        the origin of species ................................. 276
        27.3.1 Functional genomics: organization into sexual
               and non-sexual systems ......................... 277
        27.3.2 Higher variation among reproductive systems .... 277
        27.3.3 Strength of sexual selection ................... 278
        27.3.4 Sexual systems interaction, coevolution, and
               rapid change ................................... 279
        27.3.5 Rapid breakdown of sexual systems in species
               hybrids ........................................ 280
   27.4 Towards a post-genomics synthesis of speciation ....... 280
   27.5 Future prospects: sex as a major force in evolution ... 281

Index ......................................................... 285


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:48 2019. Размер: 29,159 bytes.
Посещение N 1225 c 05.11.2013